找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Evolutionary Machine Learning Techniques; Algorithms and Appli Seyedali Mirjalili,Hossam Faris,Ibrahim Aljarah Book 2020 Springer Nature Si

[復(fù)制鏈接]
查看: 10379|回復(fù): 45
樓主
發(fā)表于 2025-3-21 17:39:45 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Evolutionary Machine Learning Techniques
副標(biāo)題Algorithms and Appli
編輯Seyedali Mirjalili,Hossam Faris,Ibrahim Aljarah
視頻videohttp://file.papertrans.cn/318/317971/317971.mp4
概述Provides an in-depth analysis of the current evolutionary machine learning techniques.Includes training algorithms for machine learning techniques.Covers the application of improved artificial neural
叢書名稱Algorithms for Intelligent Systems
圖書封面Titlebook: Evolutionary Machine Learning Techniques; Algorithms and Appli Seyedali Mirjalili,Hossam Faris,Ibrahim Aljarah Book 2020 Springer Nature Si
描述.This book provides an in-depth analysis of the current evolutionary machine learning techniques. Discussing the most highly regarded methods for classification, clustering, regression, and prediction, it includes techniques such as support vector machines, extreme learning machines, evolutionary feature selection, artificial neural networks including feed-forward neural networks, multi-layer perceptron, probabilistic neural networks, self-optimizing neural networks, radial basis function networks, recurrent neural networks, spiking neural networks, neuro-fuzzy networks, modular neural networks, physical neural networks, and deep neural networks..?..The book provides essential definitions, literature reviews, and the training algorithms for machine learning using classical and modern nature-inspired techniques. It also investigates the pros and cons of classical training algorithms. It features a range of proven and recent nature-inspired algorithms used to train different types of artificial neural networks, including genetic algorithm, ant colony optimization, particle swarm optimization, grey wolf optimizer, whale optimization algorithm, ant lion optimizer, moth flame algorithm,
出版日期Book 2020
關(guān)鍵詞Artificial Neural Network; Probabilistic Neural Network; Self-Optimizing Neural Network; Feedforward Ne
版次1
doihttps://doi.org/10.1007/978-981-32-9990-0
isbn_softcover978-981-32-9992-4
isbn_ebook978-981-32-9990-0Series ISSN 2524-7565 Series E-ISSN 2524-7573
issn_series 2524-7565
copyrightSpringer Nature Singapore Pte Ltd. 2020
The information of publication is updating

書目名稱Evolutionary Machine Learning Techniques影響因子(影響力)




書目名稱Evolutionary Machine Learning Techniques影響因子(影響力)學(xué)科排名




書目名稱Evolutionary Machine Learning Techniques網(wǎng)絡(luò)公開度




書目名稱Evolutionary Machine Learning Techniques網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Evolutionary Machine Learning Techniques被引頻次




書目名稱Evolutionary Machine Learning Techniques被引頻次學(xué)科排名




書目名稱Evolutionary Machine Learning Techniques年度引用




書目名稱Evolutionary Machine Learning Techniques年度引用學(xué)科排名




書目名稱Evolutionary Machine Learning Techniques讀者反饋




書目名稱Evolutionary Machine Learning Techniques讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:20:55 | 只看該作者
Salp Chain-Based Optimization of?Support Vector Machines and Feature Weighting for Medical Diagnostin support systems have a profound impact on healthcare informatics. Integrating machine learning classifier systems into computer-aided diagnosis systems promotes the early detection of diseases, which results in more effective treatments and prolonged survival. In this chapter, we address popular d
板凳
發(fā)表于 2025-3-22 01:37:37 | 只看該作者
地板
發(fā)表于 2025-3-22 06:40:44 | 只看該作者
Efficient Moth-Flame-Based Neuroevolution Models-flame optimizer (MFO) is one of the effective swarm-based metaheuristic methods inspired by the natural direction-finding behaviours of moth insects and their well-known entrapment phenomena when they circulate the non-natural lights and flames. MFO is capable of demonstrating a very promising perf
5#
發(fā)表于 2025-3-22 12:38:36 | 只看該作者
6#
發(fā)表于 2025-3-22 14:43:58 | 只看該作者
Link Prediction Using Evolutionary Neural Network Modelsmodel can help in understanding the evolution of interactions and relationships between network members. Many applications use link prediction such as recommendation systems. Most of the existing link prediction algorithms are based on similarity measures, such as common neighbors and the Adamic/Ada
7#
發(fā)表于 2025-3-22 20:38:15 | 只看該作者
8#
發(fā)表于 2025-3-22 23:50:27 | 只看該作者
9#
發(fā)表于 2025-3-23 03:07:22 | 只看該作者
Multi-objective Particle Swarm Optimization: Theory, Literature Review, and Application in Feature Stment. Incorporating intelligent classification models and data analysis methods has intrinsic impact on converting such trivial, row data into worthy useful knowledge. Due to the explosion in computational and medical technologies, we observe an explosion in the volume of health- and medical-relate
10#
發(fā)表于 2025-3-23 06:14:35 | 只看該作者
Multi-objective Particle Swarm Optimization for Botnet Detection in?Internet of Things care, industry, and transportation. As we are entering Internet of things (IoT) digital era, IoT devices not only hack our world, but also start to hack our personal life. The widespread IoT has created a rich platform for potential IoT cyberattacks. Data mining and machine learning techniques have
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-25 15:39
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
汉沽区| 莫力| 调兵山市| 横峰县| 丰都县| 金沙县| 武冈市| 青阳县| 南华县| 澄迈县| 汉中市| 金阳县| 墨玉县| 静海县| 江城| 渝北区| 工布江达县| 武安市| 平和县| 井冈山市| 万荣县| 正定县| 内黄县| 安乡县| 西宁市| 景洪市| 临武县| 奉化市| 松原市| 库尔勒市| 会昌县| 宝清县| 尉犁县| 泗洪县| 绥芬河市| 宣化县| 扎兰屯市| 房山区| 丰城市| 蒲江县| 达州市|