找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Evolutionary Computation in Data Mining; Ashish Ghosh,Lakhmi C. Jain Book 2005 Springer-Verlag Berlin Heidelberg 2005 Data mining.Evolutio

[復(fù)制鏈接]
查看: 47589|回復(fù): 49
樓主
發(fā)表于 2025-3-21 19:32:45 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Evolutionary Computation in Data Mining
編輯Ashish Ghosh,Lakhmi C. Jain
視頻videohttp://file.papertrans.cn/318/317892/317892.mp4
概述State of the art in the area of Data Mining and Knowledge Discovery with Evolutionary Algorithms.Demonstrates how the different tools of evolutionary computation can be used for solving real-life prob
叢書名稱Studies in Fuzziness and Soft Computing
圖書封面Titlebook: Evolutionary Computation in Data Mining;  Ashish Ghosh,Lakhmi C. Jain Book 2005 Springer-Verlag Berlin Heidelberg 2005 Data mining.Evolutio
描述Data mining (DM) consists of extracting interesting knowledge from re- world, large & complex data sets; and is the core step of a broader process, called the knowledge discovery from databases (KDD) process. In addition to the DM step, which actually extracts knowledge from data, the KDD process includes several preprocessing (or data preparation) and post-processing (or knowledge refinement) steps. The goal of data preprocessing methods is to transform the data to facilitate the application of a (or several) given DM algorithm(s), whereas the goal of knowledge refinement methods is to validate and refine discovered knowledge. Ideally, discovered knowledge should be not only accurate, but also comprehensible and interesting to the user. The total process is highly computation intensive. The idea of automatically discovering knowledge from databases is a very attractive and challenging task, both for academia and for industry. Hence, there has been a growing interest in data mining in several AI-related areas, including evolutionary algorithms (EAs). The main motivation for applying EAs to KDD tasks is that they are robust and adaptive search methods, which perform a global search
出版日期Book 2005
關(guān)鍵詞Data mining; Evolutionary Computation; Knowledge Discovery in Databases; Multi-Agent Data mining; algori
版次1
doihttps://doi.org/10.1007/3-540-32358-9
isbn_softcover978-3-642-42195-2
isbn_ebook978-3-540-32358-7Series ISSN 1434-9922 Series E-ISSN 1860-0808
issn_series 1434-9922
copyrightSpringer-Verlag Berlin Heidelberg 2005
The information of publication is updating

書目名稱Evolutionary Computation in Data Mining影響因子(影響力)




書目名稱Evolutionary Computation in Data Mining影響因子(影響力)學(xué)科排名




書目名稱Evolutionary Computation in Data Mining網(wǎng)絡(luò)公開度




書目名稱Evolutionary Computation in Data Mining網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Evolutionary Computation in Data Mining被引頻次




書目名稱Evolutionary Computation in Data Mining被引頻次學(xué)科排名




書目名稱Evolutionary Computation in Data Mining年度引用




書目名稱Evolutionary Computation in Data Mining年度引用學(xué)科排名




書目名稱Evolutionary Computation in Data Mining讀者反饋




書目名稱Evolutionary Computation in Data Mining讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:53:54 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:53:00 | 只看該作者
地板
發(fā)表于 2025-3-22 07:01:09 | 只看該作者
5#
發(fā)表于 2025-3-22 11:52:14 | 只看該作者
Genetic Programming in Data Mining for Drug Discovery,arning show no statistical difference between rats (albeit without known clearance differences) and man. Thus evolutionary computing offers the prospect of . ADME screening, e.g. for “virtual” chemicals, for pharmaceutical drug discovery.
6#
發(fā)表于 2025-3-22 14:33:50 | 只看該作者
7#
發(fā)表于 2025-3-22 20:37:30 | 只看該作者
8#
發(fā)表于 2025-3-23 00:02:26 | 只看該作者
The Making of the EU’s Strategy Towards Asiathese modules, the rule-based evaluation criteria are designed in our mechanism. From our experiments, applying evolutionary algorithm to select critical financial ratios obtains better forecasting accuracy, and, a much better accuracy is obtained if more function modules are integrated in our mechanism.
9#
發(fā)表于 2025-3-23 02:56:37 | 只看該作者
Evolutionary Computation in Intelligent Network Management, used to optimize the concurrent architecture of a fuzzy clustering algorithm (to discover data clusters) and a fuzzy inference system to analyze the trends. Empirical results clearly shows that evolutionary algorithm could play a major rule for the problems considered and hence an important data mining tool.
10#
發(fā)表于 2025-3-23 07:50:41 | 只看該作者
Microarray Data Mining with Evolutionary Computation,d performance is possible. In light of the overabundance of expression data, the application of methods of simulated evolution towards the development of better predictive models holds a promising future.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 12:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
上栗县| 城市| 左贡县| 庆阳市| 林芝县| 鹤岗市| 涪陵区| 寻乌县| 崇阳县| 石渠县| 闽侯县| 松滋市| 汉源县| 电白县| 岑巩县| 子洲县| 永善县| 莫力| 大同县| 上饶市| 高淳县| 山东| 广汉市| 诸城市| 乌兰浩特市| 武清区| 科技| 通山县| 南投县| 祥云县| 柳州市| 新郑市| 新闻| 松江区| 神农架林区| 渭源县| 乌兰县| 石柱| 临猗县| 广昌县| 莱西市|