找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Evolutionary Computation in Data Mining; Ashish Ghosh,Lakhmi C. Jain Book 2005 Springer-Verlag Berlin Heidelberg 2005 Data mining.Evolutio

[復制鏈接]
樓主: crusade
11#
發(fā)表于 2025-3-23 12:35:13 | 只看該作者
An Evolutionary Modularized Data Mining Mechanism for Financial Distress Forecasts,these modules, the rule-based evaluation criteria are designed in our mechanism. From our experiments, applying evolutionary algorithm to select critical financial ratios obtains better forecasting accuracy, and, a much better accuracy is obtained if more function modules are integrated in our mechanism.
12#
發(fā)表于 2025-3-23 14:13:42 | 只看該作者
13#
發(fā)表于 2025-3-23 19:37:52 | 只看該作者
German Energy Policy in Transition,consideration to hidden relationships between features. A Genetic Algorithm is used to determine which set of features is the most predictive. Using ten well-known data sets we show that our approach, in comparison to C4.5 alone, provides marked improvement in a number of cases.
14#
發(fā)表于 2025-3-23 22:44:44 | 只看該作者
Strategies for Scaling Up Evolutionary Instance Reduction Algorithms for Data Mining,ection algorithms applied in different size data sets to evaluate the scaling up problem. The results show that the stratified evolutionary instance selection algorithms consistently outperform the non-evolutionary ones. The main advantages are: better instance reduction rates, higher classification accuracy and reduction in resources consumption.
15#
發(fā)表于 2025-3-24 05:38:31 | 只看該作者
16#
發(fā)表于 2025-3-24 07:13:17 | 只看該作者
1434-9922 lutionary computation can be used for solving real-life probData mining (DM) consists of extracting interesting knowledge from re- world, large & complex data sets; and is the core step of a broader process, called the knowledge discovery from databases (KDD) process. In addition to the DM step, whi
17#
發(fā)表于 2025-3-24 12:42:42 | 只看該作者
18#
發(fā)表于 2025-3-24 18:26:42 | 只看該作者
19#
發(fā)表于 2025-3-24 20:14:09 | 只看該作者
Louka T. Katseli,Nicholas P. Glytsoss members plays a key role in minimizing the combined bias and variance of the ensemble. In this chapter, we compare between different mechanisms and methods for promoting diversity in an ensemble. In general, we found that it is important to design the diversity promoting mechanism very carefully for the ensemble’s performance to be satisfactory.
20#
發(fā)表于 2025-3-25 01:46:00 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-13 16:21
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
乃东县| 浦城县| 衢州市| 彭山县| 龙岩市| 莲花县| 县级市| 翼城县| 内乡县| 祁连县| 东乡族自治县| 洛阳市| 天全县| 建始县| 宁阳县| 长葛市| 勃利县| 库伦旗| 开鲁县| 静乐县| 安徽省| 拉孜县| 宜丰县| 扎囊县| 布尔津县| 鲁甸县| 宁武县| 济阳县| 思茅市| 印江| 招远市| 米易县| 东乌| 屯留县| 延边| 习水县| 赤壁市| 岢岚县| 吉木乃县| 沂水县| 商河县|