找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Event Attendance Prediction in Social Networks; Xiaomei Zhang,Guohong Cao Book 2021 The Author(s), under exclusive license to Springer Nat

[復制鏈接]
樓主: DEIFY
11#
發(fā)表于 2025-3-23 12:17:05 | 只看該作者
12#
發(fā)表于 2025-3-23 15:19:50 | 只看該作者
SpringerBriefs in Statisticshttp://image.papertrans.cn/e/image/317407.jpg
13#
發(fā)表于 2025-3-23 20:06:36 | 只看該作者
https://doi.org/10.1007/978-3-319-00783-0attendance, which has three research challenges, i.e., dataset collection, extraction of appropriate attributes, and identifying suitable learning methods. We first explain these challenges and then describe how to address them with a context-aware data mining approach. In this approach, three sets
14#
發(fā)表于 2025-3-24 00:13:27 | 只看該作者
Astrophysics and Space Science Librarytion, the initial discussion centers around this topic. Existing works on short-term mobility prediction and long-term mobility prediction are reviewed. Then, we survey related work on event-based social networks, with focuses on recommendation systems and event attendance prediction.
15#
發(fā)表于 2025-3-24 05:54:42 | 只看該作者
16#
發(fā)表于 2025-3-24 06:58:53 | 只看該作者
17#
發(fā)表于 2025-3-24 14:04:36 | 只看該作者
https://doi.org/10.1007/978-3-7091-0900-7e. This process is also referred to as supervised binary classification, considering that ‘attend or not’ is a binary classification. There are many supervised classifiers in the literature, and we adopt three classifiers, including logistic regression, decision tree and na?ve Bayes. In this chapter
18#
發(fā)表于 2025-3-24 16:25:19 | 只看該作者
Group IV materials (mainly SiC),of the proposed solutions and evaluate how different parameters affect the performances. In this chapter, we first discuss the data selection, the experiment setting, and then present the evaluation results on the effectiveness of individual attributes and the performance of the three classifiers.
19#
發(fā)表于 2025-3-24 22:49:20 | 只看該作者
https://doi.org/10.1007/0-306-46940-5ng approach to solve it. Experimental results based on the collected dataset demonstrated that the proposed approach can predict event attendance with high accuracy. Finally, we point out future research directions.
20#
發(fā)表于 2025-3-25 01:42:32 | 只看該作者
Astrophysics and Space Science Librarytion, the initial discussion centers around this topic. Existing works on short-term mobility prediction and long-term mobility prediction are reviewed. Then, we survey related work on event-based social networks, with focuses on recommendation systems and event attendance prediction.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 21:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
临洮县| 永昌县| 清流县| 涞源县| 贡觉县| 穆棱市| 涡阳县| 资中县| 张北县| 南汇区| 贵溪市| 临泉县| 即墨市| 金溪县| 木兰县| 丹阳市| 柳河县| 安宁市| 色达县| 湘乡市| 临邑县| 金坛市| 林周县| 从江县| 邓州市| 靖宇县| 武穴市| 灌云县| 晋城| 航空| 简阳市| 苍南县| 溆浦县| 涪陵区| 内丘县| 云梦县| 河池市| 兰州市| 绿春县| 甘泉县| 乌鲁木齐市|