找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Event Attendance Prediction in Social Networks; Xiaomei Zhang,Guohong Cao Book 2021 The Author(s), under exclusive license to Springer Nat

[復制鏈接]
樓主: DEIFY
11#
發(fā)表于 2025-3-23 12:17:05 | 只看該作者
12#
發(fā)表于 2025-3-23 15:19:50 | 只看該作者
SpringerBriefs in Statisticshttp://image.papertrans.cn/e/image/317407.jpg
13#
發(fā)表于 2025-3-23 20:06:36 | 只看該作者
https://doi.org/10.1007/978-3-319-00783-0attendance, which has three research challenges, i.e., dataset collection, extraction of appropriate attributes, and identifying suitable learning methods. We first explain these challenges and then describe how to address them with a context-aware data mining approach. In this approach, three sets
14#
發(fā)表于 2025-3-24 00:13:27 | 只看該作者
Astrophysics and Space Science Librarytion, the initial discussion centers around this topic. Existing works on short-term mobility prediction and long-term mobility prediction are reviewed. Then, we survey related work on event-based social networks, with focuses on recommendation systems and event attendance prediction.
15#
發(fā)表于 2025-3-24 05:54:42 | 只看該作者
16#
發(fā)表于 2025-3-24 06:58:53 | 只看該作者
17#
發(fā)表于 2025-3-24 14:04:36 | 只看該作者
https://doi.org/10.1007/978-3-7091-0900-7e. This process is also referred to as supervised binary classification, considering that ‘attend or not’ is a binary classification. There are many supervised classifiers in the literature, and we adopt three classifiers, including logistic regression, decision tree and na?ve Bayes. In this chapter
18#
發(fā)表于 2025-3-24 16:25:19 | 只看該作者
Group IV materials (mainly SiC),of the proposed solutions and evaluate how different parameters affect the performances. In this chapter, we first discuss the data selection, the experiment setting, and then present the evaluation results on the effectiveness of individual attributes and the performance of the three classifiers.
19#
發(fā)表于 2025-3-24 22:49:20 | 只看該作者
https://doi.org/10.1007/0-306-46940-5ng approach to solve it. Experimental results based on the collected dataset demonstrated that the proposed approach can predict event attendance with high accuracy. Finally, we point out future research directions.
20#
發(fā)表于 2025-3-25 01:42:32 | 只看該作者
Astrophysics and Space Science Librarytion, the initial discussion centers around this topic. Existing works on short-term mobility prediction and long-term mobility prediction are reviewed. Then, we survey related work on event-based social networks, with focuses on recommendation systems and event attendance prediction.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 21:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
平阴县| 通化县| 通城县| 宿迁市| 宁安市| 奉节县| 西安市| 剑川县| 上杭县| 敦煌市| 洛南县| 长春市| 潼关县| 天柱县| 正阳县| 红河县| 华池县| 翁牛特旗| 和平县| 手游| 康保县| 平定县| 大埔区| 岐山县| 襄汾县| 定远县| 海盐县| 大英县| 阿克苏市| 淮北市| 葫芦岛市| 湄潭县| 乾安县| 辉南县| 会昌县| 遂平县| 贵阳市| 锦州市| 禄劝| 云南省| 巴林右旗|