找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Event Attendance Prediction in Social Networks; Xiaomei Zhang,Guohong Cao Book 2021 The Author(s), under exclusive license to Springer Nat

[復(fù)制鏈接]
查看: 43143|回復(fù): 41
樓主
發(fā)表于 2025-3-21 17:00:24 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Event Attendance Prediction in Social Networks
編輯Xiaomei Zhang,Guohong Cao
視頻videohttp://file.papertrans.cn/318/317407/317407.mp4
概述Predicts event attendance with machine learning techniques.Provides a comprehensive guide for predicting event attendance using real data sets.Introduces a context-aware data mining approach to predic
叢書名稱SpringerBriefs in Statistics
圖書封面Titlebook: Event Attendance Prediction in Social Networks;  Xiaomei Zhang,Guohong Cao Book 2021 The Author(s), under exclusive license to Springer Nat
描述.This volume focuses on predicting users’ attendance at a future event at specific time and location based on their common interests.?Event attendance prediction has attracted considerable attention because of its wide range of potential applications. By predicting event attendance, events that better fit users’ interests can be recommended, and personalized location-based or topic-based services related to the events can be provided to users. Moreover, it can help event organizers estimating the event scale, identifying conflicts, and help manage resources. This book first surveys existing techniques on event attendance prediction and other related topics in event-based social networks. It then introduces a context-aware data mining approach to predict the event attendance by learning how users are likely to attend future events. Specifically, three sets of context-aware attributes are identified by analyzing users’ past activities, including semantic, temporal, and spatial attributes. This book illustrates how these attributes can be applied for event attendance prediction by incorporating them into supervised learning models, and demonstrates their effectiveness through a real-w
出版日期Book 2021
關(guān)鍵詞data mining; mobile networks; supervised learning models; mobility prediction; event attendance predicti
版次1
doihttps://doi.org/10.1007/978-3-030-89262-3
isbn_softcover978-3-030-89261-6
isbn_ebook978-3-030-89262-3Series ISSN 2191-544X Series E-ISSN 2191-5458
issn_series 2191-544X
copyrightThe Author(s), under exclusive license to Springer Nature Switzerland AG 2021
The information of publication is updating

書目名稱Event Attendance Prediction in Social Networks影響因子(影響力)




書目名稱Event Attendance Prediction in Social Networks影響因子(影響力)學(xué)科排名




書目名稱Event Attendance Prediction in Social Networks網(wǎng)絡(luò)公開度




書目名稱Event Attendance Prediction in Social Networks網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Event Attendance Prediction in Social Networks被引頻次




書目名稱Event Attendance Prediction in Social Networks被引頻次學(xué)科排名




書目名稱Event Attendance Prediction in Social Networks年度引用




書目名稱Event Attendance Prediction in Social Networks年度引用學(xué)科排名




書目名稱Event Attendance Prediction in Social Networks讀者反饋




書目名稱Event Attendance Prediction in Social Networks讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:14:36 | 只看該作者
Related Work,tion, the initial discussion centers around this topic. Existing works on short-term mobility prediction and long-term mobility prediction are reviewed. Then, we survey related work on event-based social networks, with focuses on recommendation systems and event attendance prediction.
板凳
發(fā)表于 2025-3-22 01:18:23 | 只看該作者
地板
發(fā)表于 2025-3-22 07:26:08 | 只看該作者
Event Attendance Prediction: Attributes,ds to predict the event attendance. This chapter focuses on identifying the context-aware attributes. The definition of context-aware attributes requires analysis of past events with similar topics. Therefore, we first present a semantic analysis method to calculate the semantic similarity between e
5#
發(fā)表于 2025-3-22 11:54:12 | 只看該作者
6#
發(fā)表于 2025-3-22 13:36:20 | 只看該作者
Performance Evaluations,of the proposed solutions and evaluate how different parameters affect the performances. In this chapter, we first discuss the data selection, the experiment setting, and then present the evaluation results on the effectiveness of individual attributes and the performance of the three classifiers.
7#
發(fā)表于 2025-3-22 19:26:35 | 只看該作者
8#
發(fā)表于 2025-3-23 00:40:35 | 只看該作者
978-3-030-89261-6The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
9#
發(fā)表于 2025-3-23 03:55:25 | 只看該作者
10#
發(fā)表于 2025-3-23 07:41:20 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 21:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
大悟县| 金乡县| 肇源县| 嵊泗县| 安塞县| 玉龙| 珠海市| 都安| 宽城| 三河市| 林芝县| 酒泉市| 子长县| 广昌县| 信丰县| 新巴尔虎左旗| 邵东县| 枣阳市| 濉溪县| 高雄县| 吉首市| 新民市| 鄂托克旗| 中宁县| 太湖县| 衡阳市| 论坛| 甘泉县| 和平区| 宜春市| 琼海市| 柏乡县| 江阴市| 洞口县| 九寨沟县| 台中市| 石家庄市| 绩溪县| 崇阳县| 巴塘县| 嘉黎县|