找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Euro-Par 2020: Parallel Processing; 26th International C Maciej Malawski,Krzysztof Rzadca Conference proceedings 2020 Springer Nature Switz

[復(fù)制鏈接]
樓主: 閃爍
31#
發(fā)表于 2025-3-26 21:12:43 | 只看該作者
32#
發(fā)表于 2025-3-27 04:11:31 | 只看該作者
A Learning-Based Approach for Evaluating the Capacity of Data Processing Pipelineson accuracy when predicting on new configurations and when the number of data sources changes. Furthermore, our analysis demonstrates that the best prediction results are obtained when metrics of different types are combined.
33#
發(fā)表于 2025-3-27 08:44:15 | 只看該作者
34#
發(fā)表于 2025-3-27 11:22:07 | 只看該作者
OmpMemOpt: Optimized Memory Movement for Heterogeneous Computingunderlying parallel programming model and implemented our optimization framework in the LLVM toolchain. We evaluated it with ten benchmarks and obtained a geometric speedup of 2.3., and reduced on average 50% of the total bytes transferred between the host and GPU.
35#
發(fā)表于 2025-3-27 17:29:51 | 只看該作者
Accelerating Deep Learning Inference with Cross-Layer Data Reuse on GPUsayers from state-of-the-art CNNs on two different GPU platforms, NVIDIA TITAN Xp and Tesla P4. The experiments show that the average speedup is 2.02 . on representative structures of CNNs, and 1.57. on end-to-end inference of SqueezeNet.
36#
發(fā)表于 2025-3-27 18:39:39 | 只看該作者
37#
發(fā)表于 2025-3-27 21:59:03 | 只看該作者
38#
發(fā)表于 2025-3-28 03:32:11 | 只看該作者
Conference proceedings 2020nd, in August 2020. The conference was held virtually due to the coronavirus pandemic...The 39 full papers presented in this volume were carefully reviewed and selected from 158 submissions. They deal with parallel and distributed computing in general, focusing on support tools and environments; per
39#
發(fā)表于 2025-3-28 08:18:39 | 只看該作者
Parallel Scheduling of Data-Intensive Tasksdress the problem of parallel scheduling of a DAG of data-intensive tasks to minimize makespan. To do so, we propose greedy online scheduling algorithms that take load balancing, data dependencies, and data locality into account. Simulations and an experimental evaluation using an Apache Spark cluster demonstrate the advantages of our solutions.
40#
發(fā)表于 2025-3-28 10:55:02 | 只看該作者
0302-9743 nd distributed programming, interfaces, and languages; multicore and manycore parallelism; parallel numerical methods and applications; and accelerator computing..978-3-030-57674-5978-3-030-57675-2Series ISSN 0302-9743 Series E-ISSN 1611-3349
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-17 09:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
安图县| 偏关县| 轮台县| 新宁县| 嵊泗县| 峨山| 衡山县| 论坛| 陈巴尔虎旗| 南陵县| 芦山县| 噶尔县| 永善县| 高台县| 旬阳县| 叙永县| 临武县| 嘉祥县| 尚志市| 遂溪县| 义乌市| 慈利县| 安新县| 德钦县| 长阳| 西昌市| 昌乐县| 天水市| 旺苍县| 长武县| 孝义市| 望谟县| 华容县| 饶平县| 屏边| 邢台县| 如东县| 吉安县| 恩施市| 万盛区| 吴川市|