找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Euro-Par 2020: Parallel Processing; 26th International C Maciej Malawski,Krzysztof Rzadca Conference proceedings 2020 Springer Nature Switz

[復(fù)制鏈接]
樓主: 閃爍
21#
發(fā)表于 2025-3-25 05:25:30 | 只看該作者
Optimal GPU-CPU Offloading Strategies for Deep Neural Network Trainingnd requires to determine which activations should be offloaded and when these transfers should take place. We prove that this problem is NP-complete in the strong sense, and propose two heuristics based on relaxations of the problem. We then conduct a thorough experimental evaluation of standard deep neural networks.
22#
發(fā)表于 2025-3-25 10:20:19 | 只看該作者
23#
發(fā)表于 2025-3-25 12:20:57 | 只看該作者
24#
發(fā)表于 2025-3-25 19:53:56 | 只看該作者
25#
發(fā)表于 2025-3-25 22:04:01 | 只看該作者
26#
發(fā)表于 2025-3-26 01:25:14 | 只看該作者
27#
發(fā)表于 2025-3-26 07:13:35 | 只看該作者
https://doi.org/10.1007/978-3-642-94213-6e the others are throttled. The overall execution performance is improved. Employing the . on diverse HPC benchmarks and real-world applications, we observed that the hardware settings adjusted by . have near-optimal results compared to the optimal setting of a static approach. The achieved speedup in our work amounts to up?to 6.3%.
28#
發(fā)表于 2025-3-26 09:46:29 | 只看該作者
Die Revision der Neurosenfrage,underlying parallel programming model and implemented our optimization framework in the LLVM toolchain. We evaluated it with ten benchmarks and obtained a geometric speedup of 2.3., and reduced on average 50% of the total bytes transferred between the host and GPU.
29#
發(fā)表于 2025-3-26 13:02:57 | 只看該作者
Marc Oliver Opresnik,Oguz Yilmazayers from state-of-the-art CNNs on two different GPU platforms, NVIDIA TITAN Xp and Tesla P4. The experiments show that the average speedup is 2.02 . on representative structures of CNNs, and 1.57. on end-to-end inference of SqueezeNet.
30#
發(fā)表于 2025-3-26 20:31:46 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-17 09:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
桂东县| 太和县| 西充县| 新沂市| 日照市| 敦化市| 醴陵市| 策勒县| 黎平县| 梅州市| 镇远县| 九龙城区| 乌审旗| 长岛县| 淮滨县| 宣城市| 招远市| 台安县| 青田县| 泰宁县| 定边县| 手机| 西藏| 龙门县| 喀喇| 高台县| 鹤山市| 宁陵县| 永清县| 墨江| 五寨县| 博爱县| 丹东市| 甘谷县| 鲁甸县| 隆德县| 潞城市| 屯留县| 克山县| 盐池县| 永济市|