找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Eulerian Numbers; T. Kyle Petersen Textbook 2015 Springer Science+Business Media New York 2015 Catalan numbers.Coxeter groups.Eulerian num

[復(fù)制鏈接]
樓主: Taft
21#
發(fā)表于 2025-3-25 06:33:43 | 只看該作者
22#
發(fā)表于 2025-3-25 08:26:41 | 只看該作者
23#
發(fā)表于 2025-3-25 13:16:28 | 只看該作者
https://doi.org/10.1007/978-3-7091-9922-0In this supplemental chapter we will find the Eulerian numbers cropping up in some surprising places.
24#
發(fā)表于 2025-3-25 18:11:36 | 只看該作者
Institutsgeschichte als Familiengeschichte?. have arisen is in combinatorial topology. In this chapter we will put some of our previous work in the context of the study of simplicial complexes. While there is some assumed familiarity with topological concepts, no formal topological background is required for understanding this chapter.
25#
發(fā)表于 2025-3-25 21:47:32 | 只看該作者
https://doi.org/10.1007/978-3-658-06970-4. in geometry and topology. It is an operation that preserves topology and is well-behaved combinatorially. In this chapter we will study a transformation of Brenti and Welker that maps the .-vector of a complex to the .-vector of its barycentric subdivision.
26#
發(fā)表于 2025-3-26 01:22:15 | 只看該作者
27#
發(fā)表于 2025-3-26 04:31:37 | 只看該作者
28#
發(fā)表于 2025-3-26 11:23:22 | 只看該作者
Eulerian numbers. of numbers a typical mathematics student encounters is Pascal’s triangle, shown in Table?1.1. It has many beautiful properties, some of which we will review shortly. One of the main points of this chapter is to argue that the array of Eulerian numbers is just as interesting as Pascal’s triangle.
29#
發(fā)表于 2025-3-26 13:14:16 | 只看該作者
Refined enumeration. Often, the way we count allows us to keep track of more than one permutation statistic without any extra effort. In particular we consider various ways to pair a statistic with an Eulerian distribution with another statistic having a Mahonian distribution. Similar ideas are explored for Catalan objects.
30#
發(fā)表于 2025-3-26 18:47:01 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 13:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宜兰县| 黄大仙区| 五峰| 双辽市| 万全县| 社旗县| 合阳县| 桃园市| 彝良县| 襄垣县| 兴隆县| 白城市| 南皮县| 迭部县| 蒲城县| 林州市| 托克逊县| 崇礼县| 科技| 根河市| 秦皇岛市| 洛川县| 万载县| 安义县| 江源县| 靖西县| 阳城县| 红安县| 青河县| 林口县| 布拖县| 濉溪县| 日土县| 无锡市| 海伦市| 扎鲁特旗| 江永县| 黄平县| 敦化市| 即墨市| 威海市|