找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Eulerian Numbers; T. Kyle Petersen Textbook 2015 Springer Science+Business Media New York 2015 Catalan numbers.Coxeter groups.Eulerian num

[復(fù)制鏈接]
查看: 49220|回復(fù): 50
樓主
發(fā)表于 2025-3-21 16:16:32 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Eulerian Numbers
編輯T. Kyle Petersen
視頻videohttp://file.papertrans.cn/317/316455/316455.mp4
概述Offers a self-contained treatment of progress and problems related to the Eulerian numbers.Covers a topic that plays an important role in combinatorics, number theory, and topology.Provides previously
叢書名稱Birkh?user Advanced Texts‘ Basler Lehrbücher
圖書封面Titlebook: Eulerian Numbers;  T. Kyle Petersen Textbook 2015 Springer Science+Business Media New York 2015 Catalan numbers.Coxeter groups.Eulerian num
描述.This text presents the Eulerian numbers in the context of modern enumerative, algebraic, and geometric combinatorics. The book first studies Eulerian numbers from a purely combinatorial point of view, then embarks on a tour of how these numbers arise in the study of hyperplane arrangements, polytopes, and simplicial complexes. Some topics include a thorough discussion of gamma-nonnegativity and real-rootedness for Eulerian polynomials, as well as the weak order and the shard intersection order of the symmetric group..The book also includes a parallel story of Catalan combinatorics, wherein the Eulerian numbers are replaced with Narayana numbers. Again there is a progression from combinatorics to geometry, including discussion of the associahedron and the lattice of noncrossing partitions..The final chapters discuss how both the Eulerian and Narayana numbers have analogues in any finite Coxeter group, with many of the same enumerative and geometric properties.?Thereare four supplemental chapters throughout, which survey more advanced topics, including some open problems in combinatorial topology. .This textbook will serve a resource for experts in the field as well as for graduate
出版日期Textbook 2015
關(guān)鍵詞Catalan numbers; Coxeter groups; Eulerian numbers; Gal‘s conjecture; Gessel‘s conjecture; Narayana number
版次1
doihttps://doi.org/10.1007/978-1-4939-3091-3
isbn_softcover978-1-4939-4794-2
isbn_ebook978-1-4939-3091-3Series ISSN 1019-6242 Series E-ISSN 2296-4894
issn_series 1019-6242
copyrightSpringer Science+Business Media New York 2015
The information of publication is updating

書目名稱Eulerian Numbers影響因子(影響力)




書目名稱Eulerian Numbers影響因子(影響力)學(xué)科排名




書目名稱Eulerian Numbers網(wǎng)絡(luò)公開度




書目名稱Eulerian Numbers網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Eulerian Numbers被引頻次




書目名稱Eulerian Numbers被引頻次學(xué)科排名




書目名稱Eulerian Numbers年度引用




書目名稱Eulerian Numbers年度引用學(xué)科排名




書目名稱Eulerian Numbers讀者反饋




書目名稱Eulerian Numbers讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:45:36 | 只看該作者
1019-6242 upplemental chapters throughout, which survey more advanced topics, including some open problems in combinatorial topology. .This textbook will serve a resource for experts in the field as well as for graduate 978-1-4939-4794-2978-1-4939-3091-3Series ISSN 1019-6242 Series E-ISSN 2296-4894
板凳
發(fā)表于 2025-3-22 01:21:00 | 只看該作者
https://doi.org/10.1007/978-1-4939-3091-3Catalan numbers; Coxeter groups; Eulerian numbers; Gal‘s conjecture; Gessel‘s conjecture; Narayana number
地板
發(fā)表于 2025-3-22 05:28:12 | 只看該作者
5#
發(fā)表于 2025-3-22 12:08:45 | 只看該作者
Diasporic Philosophy and Counter-Educationalso like a nice omelette better than gruel. But on any given day I cannot say whether I would prefer granola (with or without fruit) or an omelette. I am only able to . order my favorite breakfast foods:
6#
發(fā)表于 2025-3-22 13:09:09 | 只看該作者
7#
發(fā)表于 2025-3-22 20:27:06 | 只看該作者
8#
發(fā)表于 2025-3-22 22:48:10 | 只看該作者
9#
發(fā)表于 2025-3-23 03:22:29 | 只看該作者
10#
發(fā)表于 2025-3-23 08:17:56 | 只看該作者
,‘So Unlike Ordinary Great Men’,?0 and the element. is completely determined by.(1),?.,?.(.). In one-line notation, we write.?=?.(1)?.(.) with bars to indicate negative numbers. For example, if. is determined by.,.(2)?=?4,.(3)?=?5,. and.(5)?=?2, we write..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 13:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
丹东市| 仁寿县| 霍州市| 福清市| 平乐县| 临高县| 广饶县| 晋江市| 襄汾县| 利津县| 德州市| 福贡县| 理塘县| 龙里县| 曲麻莱县| 南涧| 富宁县| 万荣县| 巴青县| 邢台县| 高青县| 布尔津县| 开封市| 宜州市| 沁源县| 太原市| 黎城县| 三都| 武定县| 西平县| 霞浦县| 都安| 荥经县| 武汉市| 通州市| 静安区| 乌拉特中旗| 绩溪县| 海林市| 丽江市| 蓬安县|