找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Euclidean Shortest Paths; Exact or Approximate Fajie Li,Reinhard Klette Book 2011 Springer-Verlag London Limited 2011 Art Gallery Problems.

[復(fù)制鏈接]
樓主: 瘦削
11#
發(fā)表于 2025-3-23 10:15:38 | 只看該作者
Paths on Surfaces or .=2, where .. is the length of a shortest path, ... the length of the initial path, .. the length of a restricted shortest path, and ... the length of an initial path for the restricted path calculation. Both proposed RBAs are easy to implement. Applications are, for example, in 3D object analysis in biomedical or industrial imaging.
12#
發(fā)表于 2025-3-23 16:05:44 | 只看該作者
Safari and Zookeeper Problemsting ZRP with . runtime, where . is the number of vertices of all polygons involved, and . the number of the “cages”. Extensions of the algorithms presented can solve more general SRPs and ZRPs if each convex polygon is replaced by a convex region such as convex polybeziers (beziergons) or ellipses.
13#
發(fā)表于 2025-3-23 21:31:10 | 只看該作者
14#
發(fā)表于 2025-3-23 22:12:31 | 只看該作者
Haemostatic Disorders in Diabetes Mellitus,s never implemented; the chapter provides a brief presentation and discussion of this algorithm. This is followed by a novel procedural presentation of Mitchell’s continuous Dijkstra algorithm for subdividing the plane into a shortest-path map for supporting queries about distances to a fixed start point in the presence of polygonal obstacles.
15#
發(fā)表于 2025-3-24 04:54:56 | 只看該作者
16#
發(fā)表于 2025-3-24 07:24:22 | 只看該作者
https://doi.org/10.1007/978-981-10-4376-5 available polygonal regions. This chapter explains a few exact algorithms in this area which run typically in linear or (.log.)-time with respect to a given input parameter .. However, the problems could also be solved approximately by rubberband algorithms.
17#
發(fā)表于 2025-3-24 11:21:42 | 只看該作者
Haemostatic Disorders in Diabetes Mellitus, down-stable vertices). Chazelle’s algorithm, published in 1991 and claimed to be of linear time, is often cited as a reference, but this algorithm was never implemented; the chapter provides a brief presentation and discussion of this algorithm. This is followed by a novel procedural presentation o
18#
發(fā)表于 2025-3-24 16:01:29 | 只看該作者
Matthew T. Crow,Erica N. Johnsonin .. It uses triangulation of simple polygons as presented in the previous chapter as a preprocessing step, and has a time complexity that is determined by that of the prior triangulation..This chapter provides two rubberband algorithms for computing a shortest path between . and . that is containe
19#
發(fā)表于 2025-3-24 21:51:44 | 只看該作者
20#
發(fā)表于 2025-3-24 23:13:05 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 18:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
罗城| 临沂市| 泸西县| 敦煌市| 郧西县| 通辽市| 朝阳区| 宝丰县| 佛坪县| 剑阁县| 苗栗市| 西华县| 南溪县| 鹤峰县| 聊城市| 河西区| 桃园县| 奇台县| 长沙县| 海淀区| 全南县| 安达市| 金阳县| 郎溪县| 莎车县| 中牟县| 马公市| 平邑县| 连州市| 花莲县| 阜新市| 冷水江市| 珲春市| 洛隆县| 宁河县| 乐清市| 灵宝市| 七台河市| 张北县| 延寿县| 乌拉特前旗|