找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Euclidean Shortest Paths; Exact or Approximate Fajie Li,Reinhard Klette Book 2011 Springer-Verlag London Limited 2011 Art Gallery Problems.

[復(fù)制鏈接]
查看: 43744|回復(fù): 51
樓主
發(fā)表于 2025-3-21 20:07:10 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Euclidean Shortest Paths
副標(biāo)題Exact or Approximate
編輯Fajie Li,Reinhard Klette
視頻videohttp://file.papertrans.cn/317/316426/316426.mp4
概述Reviews algorithms for the exact or approximate solution of Euclidean shortest-path problems, with a specific focus on rubberband algorithms.Provides theoretical and programming exercises at the end o
圖書封面Titlebook: Euclidean Shortest Paths; Exact or Approximate Fajie Li,Reinhard Klette Book 2011 Springer-Verlag London Limited 2011 Art Gallery Problems.
描述This unique text/reference reviews algorithms for the exact or approximate solution of shortest-path problems, with a specific focus on a class of algorithms called rubberband algorithms. Discussing each concept and algorithm in depth, the book includes mathematical proofs for many of the given statements. Topics and features: provides theoretical and programming exercises at the end of each chapter; presents a thorough introduction to shortest paths in Euclidean geometry, and the class of algorithms called rubberband algorithms; discusses algorithms for calculating exact or approximate ESPs in the plane; examines the shortest paths on 3D surfaces, in simple polyhedrons and in cube-curves; describes the application of rubberband algorithms for solving art gallery problems, including the safari, zookeeper, watchman, and touring polygons route problems; includes lists of symbols and abbreviations, in addition to other appendices.
出版日期Book 2011
關(guān)鍵詞Art Gallery Problems; Computational Geometry; Cube Curves; Euclidean Shortest Path; Parts Cutting Proble
版次1
doihttps://doi.org/10.1007/978-1-4471-2256-2
isbn_softcover978-1-4471-6064-9
isbn_ebook978-1-4471-2256-2
copyrightSpringer-Verlag London Limited 2011
The information of publication is updating

書目名稱Euclidean Shortest Paths影響因子(影響力)




書目名稱Euclidean Shortest Paths影響因子(影響力)學(xué)科排名




書目名稱Euclidean Shortest Paths網(wǎng)絡(luò)公開度




書目名稱Euclidean Shortest Paths網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Euclidean Shortest Paths被引頻次




書目名稱Euclidean Shortest Paths被引頻次學(xué)科排名




書目名稱Euclidean Shortest Paths年度引用




書目名稱Euclidean Shortest Paths年度引用學(xué)科排名




書目名稱Euclidean Shortest Paths讀者反饋




書目名稱Euclidean Shortest Paths讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:14:12 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:26:55 | 只看該作者
地板
發(fā)表于 2025-3-22 07:39:58 | 只看該作者
5#
發(fā)表于 2025-3-22 10:32:45 | 只看該作者
Diabetes and Protein Glycosylation. and ., or allowing to have those variable, where . is the total number of vertices of the given . simple and pairwise disjoint polygons; .(.) defines the numerical accuracy depending on a selected .>0.
6#
發(fā)表于 2025-3-22 14:53:44 | 只看該作者
7#
發(fā)表于 2025-3-22 19:27:02 | 只看該作者
Matthew T. Crow,Erica N. Johnsonere the super-linear time complexity is only due to preprocessing, i.e., for the decomposition of the simple polygon ., ., . is the length of an optimal path and .. the length of the initial path, as introduced in Sect.?..
8#
發(fā)表于 2025-3-22 22:33:18 | 只看該作者
9#
發(fā)表于 2025-3-23 01:33:03 | 只看該作者
Geert Jan Biessels,Jose A. Luchsingerting ZRP with . runtime, where . is the number of vertices of all polygons involved, and . the number of the “cages”. Extensions of the algorithms presented can solve more general SRPs and ZRPs if each convex polygon is replaced by a convex region such as convex polybeziers (beziergons) or ellipses.
10#
發(fā)表于 2025-3-23 08:24:22 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 20:12
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
师宗县| 革吉县| 乃东县| 英山县| 大理市| 淳化县| 高雄县| 万荣县| 滨海县| 扎兰屯市| 内乡县| 胶州市| 宝山区| 桐柏县| 固始县| 哈尔滨市| 肇源县| 玉田县| 尖扎县| 黎川县| 图木舒克市| 沙田区| 绥棱县| 沁阳市| 沙湾县| 伊吾县| 大丰市| 内黄县| 榆林市| 东海县| 舒城县| 阳江市| 富蕴县| 秦安县| 清原| 鄂温| 湄潭县| 科技| 屏东县| 屏边| 陆良县|