找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Euclidean Geometry and its Subgeometries; Edward John Specht,Harold Trainer Jones,Donald H. Book 2015 Springer International Publishing S

[復制鏈接]
樓主: Jurisdiction
51#
發(fā)表于 2025-3-30 08:39:27 | 只看該作者
52#
發(fā)表于 2025-3-30 12:38:09 | 只看該作者
https://doi.org/10.1007/978-3-642-69952-8uclidean/LUB plane (which has been built into an ordered field) real multiples of points are defined and their algebraic properties derived. These properties are used to show the existence of an order-preserving isomorphism between the set of all real numbers and the whole line. The chapter ends wit
53#
發(fā)表于 2025-3-30 18:27:49 | 只看該作者
54#
發(fā)表于 2025-3-30 20:57:45 | 只看該作者
55#
發(fā)表于 2025-3-31 02:12:35 | 只看該作者
56#
發(fā)表于 2025-3-31 08:44:18 | 只看該作者
SpringerBriefs in Earth SciencesA belineation is a bijection of a plane that preserves betweenness. This chapter shows that every belineation on a Pasch plane is a collineation, and explores the interactions between belineations and segments, rays, lines, sides of a line, angles, and triangles.
57#
發(fā)表于 2025-3-31 11:28:30 | 只看該作者
Basics of Learning Devotional Hindu Dance,This chapter defines point rotations and point reflections (about a point .) on a neutral plane, and derives their elementary properties to the extent possible without a parallel axiom. It ends with a classification of isometries of a neutral plane, and proof of the existence of a “square root” of a rotation.
58#
發(fā)表于 2025-3-31 15:22:59 | 只看該作者
59#
發(fā)表于 2025-3-31 19:24:04 | 只看該作者
60#
發(fā)表于 2025-4-1 01:17:06 | 只看該作者
,Schlussbetrachtung – Resümee und Ausblick,This brief chapter shows that on a Euclidean/LUB plane, any non-identity belineation which has more than one fixed point and is not the identity, is an axial affinity; it concludes with a classification of belineations. To prove the main result of this chapter we need Axiom LUB; this explains its placement after the chapter on real numbers.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-19 08:08
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
秭归县| 全椒县| 乌兰县| 麻阳| 二连浩特市| 读书| 察隅县| 游戏| 兴仁县| 花莲市| 花垣县| 灌云县| 泊头市| 宾阳县| 漠河县| 广南县| 措美县| 广元市| 宝丰县| 延庆县| 桐柏县| 休宁县| 明光市| 澄江县| 忻州市| 浦城县| 崇信县| 奈曼旗| 峡江县| 天水市| 台中市| 仙居县| 宜阳县| 金湖县| 五莲县| 兴安盟| 科尔| 大连市| 松原市| 拜泉县| 济宁市|