找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Euclidean Geometry and its Subgeometries; Edward John Specht,Harold Trainer Jones,Donald H. Book 2015 Springer International Publishing S

[復(fù)制鏈接]
樓主: Jurisdiction
11#
發(fā)表于 2025-3-23 18:42:59 | 只看該作者
exercises; solutions to many of these, including all that are needed for this development, are available online at the homepage for the book at www.springer.com. Supplementary material is available online cover978-3-319-79533-1978-3-319-23775-6
12#
發(fā)表于 2025-3-24 00:05:35 | 只看該作者
13#
發(fā)表于 2025-3-24 05:46:45 | 只看該作者
https://doi.org/10.1007/978-3-642-69250-5trices and determinants are given; there is also discussion of the roles of axioms, theorems, and definitions in a mathematical theory. The main development of the book begins here with the statement of eight incidence axioms and proof of a few theorems including one from Desargues.
14#
發(fā)表于 2025-3-24 06:55:16 | 只看該作者
15#
發(fā)表于 2025-3-24 14:31:45 | 只看該作者
Book 2015ailed proofs. The axioms for incidence, betweenness, and plane separation are close to those of Hilbert. This is the only axiomatic treatment of Euclidean geometry that uses axioms not involving metric notions and that explores congruence and isometries by means of reflection mappings. The authors p
16#
發(fā)表于 2025-3-24 14:57:01 | 只看該作者
Devotion to St. Anne in Texts and Imagesexistence of a line (not necessarily unique) through a given point parallel to a given line. Ordering of angles is defined, leading to the notions of acute angle, obtuse angle, and maximal angle of a triangle.
17#
發(fā)表于 2025-3-24 21:38:24 | 只看該作者
18#
發(fā)表于 2025-3-25 01:24:00 | 只看該作者
19#
發(fā)表于 2025-3-25 07:11:33 | 只看該作者
Dilations of a Euclidean Plane (DLN),in an intricate process; these, in turn, are used to define dilations, which are shown to be belineations. A method is provided for point-wise construction of a dilation having a given action. A classical proposition attributed to Pappus of Alexandria is proved.
20#
發(fā)表于 2025-3-25 07:37:46 | 只看該作者
Edward John Specht,Harold Trainer Jones,Donald H. Provides a complete and rigorous axiomatic treatment of Euclidean geometry..Proofs for many theorems are worked out in detail..Takes a modern approach by replacing congruence axioms with a transformat
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-19 10:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
师宗县| 四川省| 北安市| 赣州市| 大庆市| 马山县| 渑池县| 林芝县| 红原县| 吴堡县| 大庆市| 无锡市| 巴林左旗| 平果县| 黄石市| 罗定市| 车致| 施秉县| 上犹县| 呼图壁县| 泸西县| 蒙城县| 板桥市| 宜州市| 永安市| 汉沽区| 高唐县| 子洲县| 鲁山县| 郁南县| 银川市| 太仆寺旗| 沅江市| 海城市| 天门市| 金沙县| 库车县| 英超| 农安县| 长葛市| 安庆市|