找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Estimation of Distribution Algorithms; A New Tool for Evolu Pedro Larra?aga,Jose A. Lozano Book 2002 Springer Science+Business Media New Yo

[復制鏈接]
樓主: Stubborn
41#
發(fā)表于 2025-3-28 14:54:45 | 只看該作者
Feature Weighting for Nearest Neighbor by Estimation of Distribution Algorithms for the Nearest Neighbor algorithm. While the FW-EBNA has a set of three possible discrete weights, the FW-EGNA works in a continuous range of weights. Both methods are compared in a set of natural and artificial domains with two sequential and one Genetic Algorithm.
42#
發(fā)表于 2025-3-28 19:30:09 | 只看該作者
Partial Abductive Inference in Bayesian Networks: An Empirical Comparison Between GAs and EDAscessfully applied to give an approximate algorithm for it (de Campos et al., 1999). In this work we approach the problem by means of Estimation of Distribution Algorithms, and an empirical comparison between the results obtained by Genetic Algorithms and Estimation of Distribution Algorithms is carried out.
43#
發(fā)表于 2025-3-28 23:43:51 | 只看該作者
44#
發(fā)表于 2025-3-29 06:57:27 | 只看該作者
Solving the Traveling Salesman Problem with EDAsarch) is combined with EDAs to find better solutions. We show experimental results obtained on several standard examples for discrete and continuous EDAs both alone and combined with a heuristic local search.
45#
發(fā)表于 2025-3-29 08:47:18 | 只看該作者
Rule Induction by Estimation of Distribution Algorithmsmple rules. This problem has been modeled to allow representations with different complexities. Experimental results comparing three types of EDAs —UMDA, a dependency tree and EBNAwith two classical algorithms of rule induction —RIPPER and CN2— are shown.
46#
發(fā)表于 2025-3-29 12:25:11 | 只看該作者
47#
發(fā)表于 2025-3-29 17:29:46 | 只看該作者
48#
發(fā)表于 2025-3-29 21:45:05 | 只看該作者
M. Kasaya,K. Takegahara,A. Yanase,T. Kasuya for the Nearest Neighbor algorithm. While the FW-EBNA has a set of three possible discrete weights, the FW-EGNA works in a continuous range of weights. Both methods are compared in a set of natural and artificial domains with two sequential and one Genetic Algorithm.
49#
發(fā)表于 2025-3-30 03:41:12 | 只看該作者
50#
發(fā)表于 2025-3-30 07:50:29 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-8 05:22
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
丰台区| 南投县| 徐闻县| 澎湖县| 额济纳旗| 井冈山市| 横山县| 平定县| 甘南县| 宜兴市| 海兴县| 手游| 民乐县| 中方县| 鸡西市| 丰宁| 神池县| 新疆| 光泽县| 万源市| 瑞金市| 北京市| 潜江市| 柳林县| 綦江县| 吉木萨尔县| 京山县| 沾益县| 军事| 仪陇县| 基隆市| 海阳市| 特克斯县| 宜阳县| 上犹县| 高淳县| 海淀区| 威宁| 临西县| 无为县| 察雅县|