找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Estimation of Distribution Algorithms; A New Tool for Evolu Pedro Larra?aga,Jose A. Lozano Book 2002 Springer Science+Business Media New Yo

[復制鏈接]
樓主: Stubborn
41#
發(fā)表于 2025-3-28 14:54:45 | 只看該作者
Feature Weighting for Nearest Neighbor by Estimation of Distribution Algorithms for the Nearest Neighbor algorithm. While the FW-EBNA has a set of three possible discrete weights, the FW-EGNA works in a continuous range of weights. Both methods are compared in a set of natural and artificial domains with two sequential and one Genetic Algorithm.
42#
發(fā)表于 2025-3-28 19:30:09 | 只看該作者
Partial Abductive Inference in Bayesian Networks: An Empirical Comparison Between GAs and EDAscessfully applied to give an approximate algorithm for it (de Campos et al., 1999). In this work we approach the problem by means of Estimation of Distribution Algorithms, and an empirical comparison between the results obtained by Genetic Algorithms and Estimation of Distribution Algorithms is carried out.
43#
發(fā)表于 2025-3-28 23:43:51 | 只看該作者
44#
發(fā)表于 2025-3-29 06:57:27 | 只看該作者
Solving the Traveling Salesman Problem with EDAsarch) is combined with EDAs to find better solutions. We show experimental results obtained on several standard examples for discrete and continuous EDAs both alone and combined with a heuristic local search.
45#
發(fā)表于 2025-3-29 08:47:18 | 只看該作者
Rule Induction by Estimation of Distribution Algorithmsmple rules. This problem has been modeled to allow representations with different complexities. Experimental results comparing three types of EDAs —UMDA, a dependency tree and EBNAwith two classical algorithms of rule induction —RIPPER and CN2— are shown.
46#
發(fā)表于 2025-3-29 12:25:11 | 只看該作者
47#
發(fā)表于 2025-3-29 17:29:46 | 只看該作者
48#
發(fā)表于 2025-3-29 21:45:05 | 只看該作者
M. Kasaya,K. Takegahara,A. Yanase,T. Kasuya for the Nearest Neighbor algorithm. While the FW-EBNA has a set of three possible discrete weights, the FW-EGNA works in a continuous range of weights. Both methods are compared in a set of natural and artificial domains with two sequential and one Genetic Algorithm.
49#
發(fā)表于 2025-3-30 03:41:12 | 只看該作者
50#
發(fā)表于 2025-3-30 07:50:29 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-8 05:22
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
贵溪市| 德钦县| 元氏县| 清水县| 长乐市| 铜陵市| 乡城县| 丘北县| 洛扎县| 彭州市| 清徐县| 北宁市| 北京市| 波密县| 成都市| 建瓯市| 麻城市| 冷水江市| 晴隆县| 城口县| 徐闻县| 洪湖市| 寿宁县| 宁晋县| 广安市| 闸北区| 红桥区| 宜城市| 仁怀市| 乐清市| 恭城| 天门市| 南宫市| 青阳县| 习水县| 原平市| 辽阳县| 星子县| 绍兴县| 马鞍山市| 汶上县|