找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Estimation of Distribution Algorithms; A New Tool for Evolu Pedro Larra?aga,Jose A. Lozano Book 2002 Springer Science+Business Media New Yo

[復(fù)制鏈接]
查看: 26016|回復(fù): 54
樓主
發(fā)表于 2025-3-21 18:32:55 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Estimation of Distribution Algorithms
副標(biāo)題A New Tool for Evolu
編輯Pedro Larra?aga,Jose A. Lozano
視頻videohttp://file.papertrans.cn/316/315787/315787.mp4
叢書(shū)名稱Genetic Algorithms and Evolutionary Computation
圖書(shū)封面Titlebook: Estimation of Distribution Algorithms; A New Tool for Evolu Pedro Larra?aga,Jose A. Lozano Book 2002 Springer Science+Business Media New Yo
描述.Estimation of Distribution Algorithms: A New Tool forEvolutionary. .Computation. is devoted to a new paradigm forevolutionary computation, named estimation of distribution algorithms(EDAs). This new class of algorithms generalizes genetic algorithms byreplacing the crossover and mutation operators with learning andsampling from the probability distribution of the best individuals ofthe population at each iteration of the algorithm. Working in such away, the relationships between the variables involved in the problemdomain are explicitly and effectively captured and exploited. .This text constitutes the first compilation and review of thetechniques and applications of this new tool for performingevolutionary computation. .Estimation of Distribution Algorithms: ANew. .Tool for Evolutionary Computation. is clearly divided intothree parts. Part I is dedicated to the foundations of EDAs. In thispart, after introducing some probabilistic graphical models -Bayesian and Gaussian networks - a review of existing EDAapproaches is presented, as well as some new methods based on moreflexible probabilistic graphical models. A mathematical modeling ofdiscrete EDAs is also presented. Part II cove
出版日期Book 2002
關(guān)鍵詞Bayesian network; Cluster; algorithms; evolutionary algorithm; genetic algorithms; k-means; learning; machi
版次1
doihttps://doi.org/10.1007/978-1-4615-1539-5
isbn_softcover978-1-4613-5604-2
isbn_ebook978-1-4615-1539-5Series ISSN 1568-2587
issn_series 1568-2587
copyrightSpringer Science+Business Media New York 2002
The information of publication is updating

書(shū)目名稱Estimation of Distribution Algorithms影響因子(影響力)




書(shū)目名稱Estimation of Distribution Algorithms影響因子(影響力)學(xué)科排名




書(shū)目名稱Estimation of Distribution Algorithms網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Estimation of Distribution Algorithms網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Estimation of Distribution Algorithms被引頻次




書(shū)目名稱Estimation of Distribution Algorithms被引頻次學(xué)科排名




書(shū)目名稱Estimation of Distribution Algorithms年度引用




書(shū)目名稱Estimation of Distribution Algorithms年度引用學(xué)科排名




書(shū)目名稱Estimation of Distribution Algorithms讀者反饋




書(shū)目名稱Estimation of Distribution Algorithms讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:29:03 | 只看該作者
板凳
發(fā)表于 2025-3-22 04:19:29 | 只看該作者
地板
發(fā)表于 2025-3-22 04:51:58 | 只看該作者
5#
發(fā)表于 2025-3-22 10:41:32 | 只看該作者
Dario Braga,Fabrizia Grepioni,A. Guy Orpenhe most used Evolutionary Algorithms —Genetic Algorithms, Evolution Strategies and Evolutionary Programming— are explained in detail. We give pointers to the literature on their theoretical foundations.
6#
發(fā)表于 2025-3-22 14:53:36 | 只看該作者
7#
發(fā)表于 2025-3-22 17:08:04 | 只看該作者
https://doi.org/10.1007/978-3-642-95686-7 in continuous domains. Different approaches for Estimation of Distribution Algorithms have been ordered by the complexity of the interrelations that they are able to express. These will be introduced using one unified notation.
8#
發(fā)表于 2025-3-23 00:52:19 | 只看該作者
9#
發(fā)表于 2025-3-23 03:15:24 | 只看該作者
https://doi.org/10.1007/978-1-4757-4896-3etworks to model the probability distribution of the selected individuals, and particularly on those that use a score+search learning strategy. Apart from the evaluation of the fitness function, the biggest computational cost in these EDAs is due to the structure learning step. We aim to speed up th
10#
發(fā)表于 2025-3-23 06:17:48 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 15:08
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
汕头市| 曲阳县| 安庆市| 浑源县| 顺义区| 芦山县| 榕江县| 四平市| 汉源县| 措美县| 霍林郭勒市| 台湾省| 海城市| 临城县| 集贤县| 左云县| 黑河市| 澄江县| 湟源县| 武功县| 夏河县| 壤塘县| 正蓝旗| 景宁| 扶绥县| 泌阳县| 唐山市| 永昌县| 离岛区| 团风县| 旅游| 宜宾县| 武汉市| 拉孜县| 南皮县| 十堰市| 镇康县| 清徐县| 陆丰市| 岑溪市| 宁晋县|