找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Estimating Output-Specific Efficiencies; Dieter Gstach Book 2002 Springer Science+Business Media Dordrecht 2002 Markov Chain.Monte Carlo S

[復(fù)制鏈接]
樓主: 不足木
21#
發(fā)表于 2025-3-25 05:40:49 | 只看該作者
https://doi.org/10.1057/9780230376687e idea behind the mechanics of the present application. The interested reader will find many textbooks covering the theory in detail, for example Gilks et al., 1996b or Gamerman, 1997. Note also that the present application is formulated in a Bayesian framework, while Markov chain Monte Carlo applic
22#
發(fā)表于 2025-3-25 09:07:13 | 只看該作者
https://doi.org/10.1057/9781137035110of a convex production technology satisfying strong disposability. This technology will be primarily described by Farrell output-efficient boundaries ..(.) depending on input vector . ? ?.. An output-ratio vector . = {.......} defined as .. = ../Σ... for . = 1... . together with . then uniquely dete
23#
發(fā)表于 2025-3-25 14:36:15 | 只看該作者
Hester van Herk,Carlos J. Torelliresentation of ..(..,..) is missing. This is exactly the case with a DEA estimated frontier. So parameter estimation based on analytical evaluation of this likelihood in applied work (with unknown frontier) is impossible.
24#
發(fā)表于 2025-3-25 16:03:34 | 只看該作者
25#
發(fā)表于 2025-3-25 22:51:55 | 只看該作者
26#
發(fā)表于 2025-3-26 03:04:56 | 只看該作者
27#
發(fā)表于 2025-3-26 05:20:36 | 只看該作者
28#
發(fā)表于 2025-3-26 12:04:22 | 只看該作者
IdentificationTo discuss the issue of identifiability we need the marginal likelihood of observing the sample outputs . = {..... ..} for given sample inputs . = {..... ..} and given parameters of the involved density functions.
29#
發(fā)表于 2025-3-26 15:37:50 | 只看該作者
30#
發(fā)表于 2025-3-26 20:27:34 | 只看該作者
Chung-Shen Kuo,Wenliang Lu,Yao-Lin Kui a straightforward extension of DEA ideas. Then a simple procedure for bias correction of DEA frontier point estimates will be sketched, because the standard estimates are known to be biased under any of the potentially underlying statistical structures and because such bias correction will also underly the reported results in Chapter 8.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 19:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
德庆县| 电白县| 渭南市| 绿春县| 喀喇沁旗| 津市市| 广德县| 成都市| 来凤县| 涟水县| 石楼县| 双流县| 台湾省| 赤水市| 桓仁| 南丰县| 方城县| 塘沽区| 横峰县| 通海县| 武乡县| 聊城市| 英吉沙县| 龙泉市| 眉山市| 达尔| 库尔勒市| 苗栗县| 柳河县| 广丰县| 乌拉特前旗| 昌宁县| 青川县| 定结县| 荃湾区| 大埔区| 炉霍县| 兰坪| 顺昌县| 桃江县| 琼中|