找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Ergodic Theory and Dynamical Systems I; Proceedings Special A. Katok Conference proceedings 1981 Springer Science+Business Media New York

[復制鏈接]
樓主: Eisenhower
21#
發(fā)表于 2025-3-25 03:39:14 | 只看該作者
22#
發(fā)表于 2025-3-25 11:00:24 | 只看該作者
Ergodic Theory and Dynamical Systems I978-1-4899-6696-4Series ISSN 0743-1643 Series E-ISSN 2296-505X
23#
發(fā)表于 2025-3-25 12:53:19 | 只看該作者
0743-1643 Overview: 978-1-4899-6698-8978-1-4899-6696-4Series ISSN 0743-1643 Series E-ISSN 2296-505X
24#
發(fā)表于 2025-3-25 16:41:52 | 只看該作者
25#
發(fā)表于 2025-3-25 20:24:43 | 只看該作者
Biotechnologische Energieumwandlunghe compact group G, and H is an S-invariant closed subgroup. By taking a measurable cross section to the quotient map G → G/H, the transformation S can be regarded as a skew product of the quotient automorphism S. with the restriction S. of S to H. We can study S by studying the simpler components,
26#
發(fā)表于 2025-3-26 01:26:55 | 只看該作者
https://doi.org/10.1007/978-3-642-30479-8a given ergodic transformation is a dense G.. The class of transformations T such that the family {T.: i ? ?} is disjoint is also a dense G.. As a corollary there exists an uncountable family {T.: α ? A} of weakly-mixing transformations such that the family . is disjoint.
27#
發(fā)表于 2025-3-26 05:13:18 | 只看該作者
28#
發(fā)表于 2025-3-26 10:39:19 | 只看該作者
29#
發(fā)表于 2025-3-26 14:58:08 | 只看該作者
30#
發(fā)表于 2025-3-26 17:10:33 | 只看該作者
2367-4512 cs methods.Offers a valuable resource for all researchers an.This book gathers a selection of peer-reviewed papers presented at the third Big Data Analytics for Cyber-Physical System in Smart City (BDCPS 2021) conference, held in Shanghai, China, on Nov. 27, 2021. The contributions, prepared by an i
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 03:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
连城县| 宁波市| 万全县| 冀州市| 溧阳市| 安图县| 旌德县| 安塞县| 汝城县| 榆林市| 建湖县| 荥经县| 克什克腾旗| 和静县| 日照市| 五峰| 太仓市| 孝昌县| 哈巴河县| 通山县| 沾益县| 峨山| 绥棱县| 苍梧县| 元谋县| 甘泉县| 且末县| 靖边县| 台南县| 日照市| 莱阳市| 从化市| 大连市| 舒城县| 滕州市| 石渠县| 山丹县| 禄劝| 临猗县| 涿鹿县| 天镇县|