找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Ergodic Theory and Dynamical Systems I; Proceedings Special A. Katok Conference proceedings 1981 Springer Science+Business Media New York

[復(fù)制鏈接]
樓主: Eisenhower
11#
發(fā)表于 2025-3-23 09:42:41 | 只看該作者
12#
發(fā)表于 2025-3-23 15:45:13 | 只看該作者
13#
發(fā)表于 2025-3-23 21:56:53 | 只看該作者
14#
發(fā)表于 2025-3-24 01:43:13 | 只看該作者
15#
發(fā)表于 2025-3-24 03:01:14 | 只看該作者
Enzymatic Processing of Musts and Wines,Several aspects of the title are explained. In particular an example is constructed in which there is a unique minimal set, all points are generic and there is a continuous arc of ergodic measures.
16#
發(fā)表于 2025-3-24 10:34:40 | 只看該作者
Continuous Homomorphisms of Bernoulli Schemes,Let m and n be integers greater than one. We set.then S and T are homeomorphisms of the compact spaces S and Y.
17#
發(fā)表于 2025-3-24 13:19:20 | 只看該作者
Projective Swiss Cheeses and Uniquely Ergodic Interval Exchange Transformations,1. Introduction. Recall that an . on a finite (left closed-right open) interval, J ? ? is a transformation, T, of J which results from decomposing J into a finite number of (left closed-right open) subintervals and translating these subintervals in such a way that their union is again J. T is determined by J and three additional entities:
18#
發(fā)表于 2025-3-24 18:44:44 | 只看該作者
When All Points are Recurrent/Generic,Several aspects of the title are explained. In particular an example is constructed in which there is a unique minimal set, all points are generic and there is a continuous arc of ergodic measures.
19#
發(fā)表于 2025-3-24 20:25:03 | 只看該作者
20#
發(fā)表于 2025-3-25 00:09:00 | 只看該作者
Disjointness of Measure-Preserving Transformations, Minimal Self-Joinings and Category,a given ergodic transformation is a dense G.. The class of transformations T such that the family {T.: i ? ?} is disjoint is also a dense G.. As a corollary there exists an uncountable family {T.: α ? A} of weakly-mixing transformations such that the family . is disjoint.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 07:13
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
务川| 上杭县| 普格县| 绥江县| 当阳市| 益阳市| 盐池县| 襄汾县| 汝州市| 上蔡县| 兴仁县| 苍梧县| 始兴县| 商城县| 江川县| 平乐县| 双城市| 西城区| 积石山| 金阳县| 宜春市| 晋州市| 阆中市| 丹阳市| 腾冲县| 额尔古纳市| 拜泉县| 鹤庆县| 漳州市| 尼玛县| 商南县| 盱眙县| 蒙山县| 荆门市| 湖北省| 滁州市| 南阳市| 霍邱县| 资中县| 德阳市| 理塘县|