找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Ergodic Theoretic Methods in Group Homology; A Minicourse on L2-B Clara L?h Book 2020 The Author(s), under exclusive license to Springer Na

[復(fù)制鏈接]
樓主: Tyler
21#
發(fā)表于 2025-3-25 07:24:04 | 只看該作者
22#
發(fā)表于 2025-3-25 07:33:49 | 只看該作者
The von Neumann Dimension,ion; this leads to .-Betti numbers. In this chapter, we will introduce such an equivariant version of dimension, using the group von Neumann algebra. In Chap.?., this dimension will allow us to define .-Betti numbers of groups and spaces.
23#
發(fā)表于 2025-3-25 13:48:45 | 只看該作者
The Residually Nite View: Approximation,rings. We explain the (spectral) proof of this approximation theorem and briefly discuss the relation with other (homological) gradient invariants. This residually finite view will be complemented by the dynamical view in Chap. . and the approximation theorems for lattices in Chap. ..
24#
發(fā)表于 2025-3-25 16:23:27 | 只看該作者
25#
發(fā)表于 2025-3-25 23:52:55 | 只看該作者
Invariant Random Subgroups,in the statement of the theorem and two instructive examples. We will then sketch how ergodic theory, in the incarnation of invariant random subgroups, helps to handle such homology gradients and outline the structure of the proof of the theorem.
26#
發(fā)表于 2025-3-26 03:35:47 | 只看該作者
27#
發(fā)表于 2025-3-26 07:15:00 | 只看該作者
Redouane Choukr-Allah,Ragab Ragabrings. We explain the (spectral) proof of this approximation theorem and briefly discuss the relation with other (homological) gradient invariants. This residually finite view will be complemented by the dynamical view in Chap. . and the approximation theorems for lattices in Chap. ..
28#
發(fā)表于 2025-3-26 09:16:20 | 只看該作者
29#
發(fā)表于 2025-3-26 13:06:47 | 只看該作者
30#
發(fā)表于 2025-3-26 19:28:03 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 07:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
牙克石市| 茌平县| 永吉县| 龙山县| 九寨沟县| 邯郸县| 嘉善县| 札达县| 榆中县| 青河县| 定南县| 柳江县| 芦山县| 电白县| 滕州市| 阿巴嘎旗| 剑河县| 彭州市| 青浦区| 凤城市| 维西| 荆门市| 庆城县| 诸暨市| 津市市| 通州区| 横峰县| 荃湾区| 溧阳市| 措勤县| 清水县| 修水县| 留坝县| 垣曲县| 宣城市| 黑河市| 宜昌市| 内江市| 衡阳市| 崇州市| 莱阳市|