找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Ergodic Theoretic Methods in Group Homology; A Minicourse on L2-B Clara L?h Book 2020 The Author(s), under exclusive license to Springer Na

[復(fù)制鏈接]
查看: 38266|回復(fù): 42
樓主
發(fā)表于 2025-3-21 16:17:37 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Ergodic Theoretic Methods in Group Homology
副標(biāo)題A Minicourse on L2-B
編輯Clara L?h
視頻videohttp://file.papertrans.cn/315/314482/314482.mp4
概述Makes recent developments on L2-Betti numbers of groups and related invariants easily accessible to advanced students and researchers.Explains the rich interplay between the residually finite approach
叢書名稱SpringerBriefs in Mathematics
圖書封面Titlebook: Ergodic Theoretic Methods in Group Homology; A Minicourse on L2-B Clara L?h Book 2020 The Author(s), under exclusive license to Springer Na
描述This book offers a concise introduction to ergodic methods in group homology, with a particular focus on the computation of .L.2.-Betti numbers..Group homology integrates group actions into homological structure. Coefficients based on probability measure preserving actions combine ergodic theory and homology. An example of such an interaction is provided by .L.2.-Betti numbers: these invariants can be understood in terms of group homology with coefficients related to the group von Neumann algebra, via approximation by finite index subgroups, or via dynamical systems. In this way, .L.2.-Betti numbers lead to orbit/measure equivalence invariants and measured group theory helps to compute .L.2.-Betti numbers. Similar methods apply also to compute the rank gradient/cost of groups as well as the simplicial volume of manifolds..This book introduces .L.2.-Betti numbers of groups at an elementary level and thendevelops the ergodic point of view, emphasising the connection with approximation phenomena for homological gradient invariants of groups and spaces. The text is an extended version of the lecture notes for a minicourse at the MSRI summer graduate school “Random and arithmetic struct
出版日期Book 2020
關(guān)鍵詞L2-Betti numbers; von Neumann dimension; measured group theory; approximation of homological invariants
版次1
doihttps://doi.org/10.1007/978-3-030-44220-0
isbn_softcover978-3-030-44219-4
isbn_ebook978-3-030-44220-0Series ISSN 2191-8198 Series E-ISSN 2191-8201
issn_series 2191-8198
copyrightThe Author(s), under exclusive license to Springer Nature Switzerland AG 2020
The information of publication is updating

書目名稱Ergodic Theoretic Methods in Group Homology影響因子(影響力)




書目名稱Ergodic Theoretic Methods in Group Homology影響因子(影響力)學(xué)科排名




書目名稱Ergodic Theoretic Methods in Group Homology網(wǎng)絡(luò)公開度




書目名稱Ergodic Theoretic Methods in Group Homology網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Ergodic Theoretic Methods in Group Homology被引頻次




書目名稱Ergodic Theoretic Methods in Group Homology被引頻次學(xué)科排名




書目名稱Ergodic Theoretic Methods in Group Homology年度引用




書目名稱Ergodic Theoretic Methods in Group Homology年度引用學(xué)科排名




書目名稱Ergodic Theoretic Methods in Group Homology讀者反饋




書目名稱Ergodic Theoretic Methods in Group Homology讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:00:39 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:26:14 | 只看該作者
地板
發(fā)表于 2025-3-22 07:01:32 | 只看該作者
5#
發(fā)表于 2025-3-22 11:51:16 | 只看該作者
6#
發(fā)表于 2025-3-22 15:36:38 | 只看該作者
The Residually Nite View: Approximation,rings. We explain the (spectral) proof of this approximation theorem and briefly discuss the relation with other (homological) gradient invariants. This residually finite view will be complemented by the dynamical view in Chap. . and the approximation theorems for lattices in Chap. ..
7#
發(fā)表于 2025-3-22 19:32:08 | 只看該作者
The Dynamical View: Measured Group Theory,computed in terms of probability measure preserving actions..We will first recall basic terminology from measured group theory. Then we will study .-Betti numbers of standard equivalence relations. Moreover, we will discuss cost and its relation with the first .-Betti number and rank gradients.
8#
發(fā)表于 2025-3-22 23:20:35 | 只看該作者
9#
發(fā)表于 2025-3-23 03:34:08 | 只看該作者
10#
發(fā)表于 2025-3-23 08:43:58 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 17:14
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
万山特区| 鄂托克旗| 江川县| 昌邑市| 广宁县| 峨边| 凤山县| 溆浦县| 江陵县| 泗水县| 遵义县| 红原县| 安丘市| 贵德县| 玉门市| 城口县| 平阳县| 图木舒克市| 邹城市| 多伦县| 塔城市| 宁乡县| 正蓝旗| 华安县| 三穗县| 桦川县| 开阳县| 忻州市| 越西县| 班玛县| 卢氏县| 慈溪市| 武威市| 临桂县| 保亭| 中西区| 大石桥市| 正阳县| 银川市| 衡水市| 长阳|