找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Erdélyi–Kober Fractional Calculus; From a Statistical P A. M. Mathai,H. J. Haubold Book 2018 The Author(s), under exclusive licence to Spri

[復(fù)制鏈接]
樓主: GUAFF
11#
發(fā)表于 2025-3-23 10:17:03 | 只看該作者
https://doi.org/10.1007/978-1-4471-1735-3tor of the second kind or first kind. Other such analogues can be defined. The second kind fractional integrals will be considered first. In this chapter, multivariate case means the case of many real scalar variables.
12#
發(fā)表于 2025-3-23 14:00:25 | 只看該作者
Specific Issues under International Law,l scalar variable case is the one most frequently appearing in various theoretical and applied areas. Fractional calculus in the complex domain was considered only recently, see Mathai [2]. The following discussion is based on this work.
13#
發(fā)表于 2025-3-23 19:14:26 | 只看該作者
14#
發(fā)表于 2025-3-23 22:33:26 | 只看該作者
15#
發(fā)表于 2025-3-24 05:08:13 | 只看該作者
,Erdélyi-Kober Fractional Integrals in the Complex Domain,l scalar variable case is the one most frequently appearing in various theoretical and applied areas. Fractional calculus in the complex domain was considered only recently, see Mathai [2]. The following discussion is based on this work.
16#
發(fā)表于 2025-3-24 06:42:00 | 只看該作者
17#
發(fā)表于 2025-3-24 14:27:10 | 只看該作者
18#
發(fā)表于 2025-3-24 18:48:04 | 只看該作者
Jeremy Knox,Yuchen Wang,Michael Gallagherhapters the basic claim is that fractional integrals are of two kinds, the first kind or left-sided and the second kind or right-sided. The first kind of fractional integrals belong to the class of Mellin convolution of a ratio and the second kind of fractional integrals belong to the class of Melli
19#
發(fā)表于 2025-3-24 21:34:04 | 只看該作者
20#
發(fā)表于 2025-3-24 23:57:37 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 13:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
惠州市| 抚宁县| 娄底市| 延寿县| 佛山市| 张家港市| 藁城市| 宝坻区| 舒城县| 长顺县| 安泽县| 雷山县| 神池县| 蒙阴县| 仙桃市| 湘潭县| 普定县| 梁河县| 嘉义市| 仙居县| 麻城市| 开封市| 乐陵市| 清苑县| 安龙县| 通许县| 迁安市| 威远县| 新邵县| 西青区| 大港区| 资兴市| 苏尼特右旗| 汉寿县| 河津市| 峨眉山市| 石嘴山市| 闽侯县| 高邑县| 天等县| 府谷县|