找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Erdélyi–Kober Fractional Calculus; From a Statistical P A. M. Mathai,H. J. Haubold Book 2018 The Author(s), under exclusive licence to Spri

[復制鏈接]
查看: 14474|回復: 40
樓主
發(fā)表于 2025-3-21 18:31:02 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Erdélyi–Kober Fractional Calculus
副標題From a Statistical P
編輯A. M. Mathai,H. J. Haubold
視頻videohttp://file.papertrans.cn/314/313617/313617.mp4
概述Is the first book to present a statistical perspective for Erdélyi–Kober operators of fractional calculus.Provides the interpretation of the diffusion entropy analysis of solar neutrino data of Super-
叢書名稱SpringerBriefs in Mathematical Physics
圖書封面Titlebook: Erdélyi–Kober Fractional Calculus; From a Statistical P A. M. Mathai,H. J. Haubold Book 2018 The Author(s), under exclusive licence to Spri
描述.This book focuses on Erdélyi–Kober fractional calculus from a statistical perspective inspired by solar neutrino physics. Results of diffusion entropy analysis and standard deviation analysis of data from the Super-Kamiokande solar neutrino experiment lead to the development of anomalous diffusion and reaction in terms of fractional calculus. The new statistical perspective of Erdélyi–Kober fractional operators outlined in this book will have fundamental applications in the theory of anomalous reaction and diffusion processes dealt with in physics..A major mathematical objective of this book is specifically to examine a new de?nition for fractional integrals in terms of the distributions of products and ratios of statistically independently distributed positive scalar random variables or in terms of Mellin convolutions of products and ratios in the case of real scalar variables. The idea will be generalized to cover multivariable cases as well as matrix variable cases. In the matrix variable case, M-convolutions of products and ratios will be used to extend the ideas. We then give a de?nition for the case of real-valued scalar functions of several matrices..
出版日期Book 2018
關(guān)鍵詞Fractional calculus; Fractional operators; Real variable case; Multivariable case; Matrix-variate case
版次1
doihttps://doi.org/10.1007/978-981-13-1159-8
isbn_softcover978-981-13-1158-1
isbn_ebook978-981-13-1159-8Series ISSN 2197-1757 Series E-ISSN 2197-1765
issn_series 2197-1757
copyrightThe Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd. 2018
The information of publication is updating

書目名稱Erdélyi–Kober Fractional Calculus影響因子(影響力)




書目名稱Erdélyi–Kober Fractional Calculus影響因子(影響力)學科排名




書目名稱Erdélyi–Kober Fractional Calculus網(wǎng)絡(luò)公開度




書目名稱Erdélyi–Kober Fractional Calculus網(wǎng)絡(luò)公開度學科排名




書目名稱Erdélyi–Kober Fractional Calculus被引頻次




書目名稱Erdélyi–Kober Fractional Calculus被引頻次學科排名




書目名稱Erdélyi–Kober Fractional Calculus年度引用




書目名稱Erdélyi–Kober Fractional Calculus年度引用學科排名




書目名稱Erdélyi–Kober Fractional Calculus讀者反饋




書目名稱Erdélyi–Kober Fractional Calculus讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:41:56 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:55:15 | 只看該作者
,Erdélyi-Kober Fractional Integrals in the Real Matrix-Variante Case,rting the discussion, we will need some Jacobians of matrix transformations here. For results on Jacobians, see Mathai [3]. For the real matrix-variate case, the determinant of . will be denoted by either det(.) or by |.|. When complex matrices are involved we will use the notation det(.) for determ
地板
發(fā)表于 2025-3-22 07:15:48 | 只看該作者
5#
發(fā)表于 2025-3-22 12:48:29 | 只看該作者
,Erdélyi-Kober Fractional Integrals Involving Many Real Matrices,for the ratio of .. to .. in the real scalar variable case, ., symmetric ratio, in the real .?×?. matrix-variate case. The corresponding density of .. and .. will be indicated by ..; we will use ..?=?... for the product in the real scalar variable case and ., the symmetric product, in the real .?×?.
6#
發(fā)表于 2025-3-22 14:26:29 | 只看該作者
,Erdélyi-Kober Fractional Integrals in the Complex Domain,e case. In the present chapter we will look into fractional calculus in the complex domain. Since we will be dealing with .?×?. Hermitian positive definite matrices, for .?=?1 Hermitian positive definite means a real scalar positive variable. Hence we start with .?≥?2. Fractional calculus of one rea
7#
發(fā)表于 2025-3-22 20:48:13 | 只看該作者
8#
發(fā)表于 2025-3-23 00:57:56 | 只看該作者
,Erdélyi-Kober Fractional Integrals in the Real Matrix-Variante Case,be written as ., denoting a matrix . in the complex domain as .. All matrices appearing in this chapter are .?×?. real positive definite unless stated otherwise. Some Jacobians of matrix transformations will be stated here as lemmas without proofs. For proofs and other details, see Mathai [3].
9#
發(fā)表于 2025-3-23 01:56:59 | 只看該作者
10#
發(fā)表于 2025-3-23 07:49:23 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 13:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
资溪县| 义马市| 康定县| 屯门区| 重庆市| 澄城县| 普洱| 方城县| 梧州市| 比如县| 来安县| 崇阳县| 阆中市| 正宁县| 常熟市| 抚顺县| 子洲县| 南溪县| 利津县| 温州市| 浮山县| 手机| 祥云县| 江口县| 应城市| 永兴县| 桃园县| 巧家县| 青岛市| 塔城市| 邵武市| 怀集县| 永昌县| 巫溪县| 井陉县| 湘乡市| 新密市| 陆良县| 朝阳市| 宝应县| 资兴市|