找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Epistemic Logic and the Theory of Games and Decisions; Michael Bacharach (Professor of Economics and Dire Book 1997 Kluwer Academic Publis

[復(fù)制鏈接]
樓主: proptosis
51#
發(fā)表于 2025-3-30 09:32:47 | 只看該作者
0924-6126 Overview: 978-1-4612-8436-9978-1-4613-1139-3Series ISSN 0924-6126 Series E-ISSN 2194-3044
52#
發(fā)表于 2025-3-30 15:52:48 | 只看該作者
53#
發(fā)表于 2025-3-30 20:32:20 | 只看該作者
54#
發(fā)表于 2025-3-30 21:45:43 | 只看該作者
55#
發(fā)表于 2025-3-31 01:39:52 | 只看該作者
56#
發(fā)表于 2025-3-31 05:05:19 | 只看該作者
Axiomatic Indefinability of Common Knowledge in Finitary LogicsIn game theory and economics, we often meet the concept of common knowledge. In literature, there are quite a few approaches to common knowledge. In this paper, we discuss the approach in the terms of epistemic logics, and consider several questions on the definability of common knowledge in such logics ...
57#
發(fā)表于 2025-3-31 09:47:17 | 只看該作者
From Logical Omniscience to Partial Logical CompetenceEpistemic or doxastic logic is often constructed on classical propositional logic to which a knowledge or belief operator . is added with the intended interpretation “I know that” or “I believe that”.
58#
發(fā)表于 2025-3-31 16:19:50 | 只看該作者
Representing the Knowledge of Turing MachinesIn this paper, we shall follow the implications of the following pair of principles.
59#
發(fā)表于 2025-3-31 20:22:51 | 只看該作者
60#
發(fā)表于 2025-4-1 00:16:20 | 只看該作者
Extension Theorems,sets E. (.=0, 1, 2,…) may be empty from some . onward. The sequence of restrictions R. = R | E. will be called a . for R. We shall identify R itself with the restrictive sequence defined by E. = E(.=0,1,2,…).
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 15:14
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宁明县| 祁阳县| 荣成市| 福安市| 鹤庆县| 珲春市| 平湖市| 蓬安县| 广饶县| 凌海市| 迭部县| 嘉义县| 江达县| 舞阳县| 离岛区| 宾阳县| 闻喜县| 渭源县| 青阳县| 湾仔区| 磐安县| 宜宾市| 布尔津县| 宁明县| 株洲县| 旬阳县| 子洲县| 宜宾市| 犍为县| 谷城县| 卢氏县| 绥棱县| 青铜峡市| 新蔡县| 会理县| 嘉禾县| 岑巩县| 商洛市| 江油市| 兴文县| 常德市|