找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Entire Solutions of Semilinear Elliptic Equations; I. Kuzin,S. Pohozaev Book 1997 Bikh?user Verlag 1997 Finite.Identity.Invariant.equation

[復(fù)制鏈接]
樓主: Arthur
11#
發(fā)表于 2025-3-23 12:33:15 | 只看該作者
12#
發(fā)表于 2025-3-23 14:59:37 | 只看該作者
13#
發(fā)表于 2025-3-23 19:33:27 | 只看該作者
14#
發(fā)表于 2025-3-24 00:21:38 | 只看該作者
Verantwortung und Wissenschaft,We saw in §12 that noncoercive problems .can be studied with the help of theorems on a conditional minimum if . is homogeneous. However such . are rare.
15#
發(fā)表于 2025-3-24 05:59:33 | 只看該作者
https://doi.org/10.1007/978-3-0348-7962-0In this chapter, we consider the equation . where we denote . = |x|.
16#
發(fā)表于 2025-3-24 10:27:15 | 只看該作者
Industrial Marketing GenerationsThe Laplace operator possesses a remarkable feature of monotonicity permitting us to study the solvability of elliptic problems. The statement is given in Theorem 25.1.
17#
發(fā)表于 2025-3-24 12:50:33 | 只看該作者
Classical Variational Method,In this chapter and throughout the book, we shall consider boundary problems of the form. Functions . : ?. x ? → ? are supposed to satisfy a so-called Carathéodory condition, i.e., to be continuous with respect to . for almost all x ∈ ?. and measurable in x for all . ∈ ?.
18#
發(fā)表于 2025-3-24 17:58:22 | 只看該作者
Variational Methods for Eigenvalue Problems,Up to now we have studied problems of a coercive type. Investigation of noncoercive problems requires other methods. One of the ways is the reduction of an original elliptic problem to a new one with a free parameter (eigenvalue) and the investigation of this new problem, for example, by the method of a conditional extremum.
19#
發(fā)表于 2025-3-24 20:40:49 | 只看該作者
20#
發(fā)表于 2025-3-25 01:34:05 | 只看該作者
Radial Solutions: The ODE Method,In this chapter, we consider the equation . where we denote . = |x|.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 07:38
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
德阳市| 扬州市| 兴业县| 屯门区| 出国| 汉寿县| 长垣县| 安溪县| 屏边| 岢岚县| 阿城市| 内江市| 宝丰县| 西华县| 红桥区| 台南县| 皋兰县| 东兴市| 苏尼特右旗| 玉门市| 建水县| 息烽县| 长汀县| 轮台县| 安溪县| 连平县| 普兰店市| 泰和县| 弥渡县| 普兰县| 镇原县| 聂拉木县| 棋牌| 隆德县| 和龙市| 姜堰市| 屏东市| 德江县| 蒙阴县| 红安县| 华安县|