找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Entire Solutions of Semilinear Elliptic Equations; I. Kuzin,S. Pohozaev Book 1997 Bikh?user Verlag 1997 Finite.Identity.Invariant.equation

[復(fù)制鏈接]
樓主: Arthur
11#
發(fā)表于 2025-3-23 12:33:15 | 只看該作者
12#
發(fā)表于 2025-3-23 14:59:37 | 只看該作者
13#
發(fā)表于 2025-3-23 19:33:27 | 只看該作者
14#
發(fā)表于 2025-3-24 00:21:38 | 只看該作者
Verantwortung und Wissenschaft,We saw in §12 that noncoercive problems .can be studied with the help of theorems on a conditional minimum if . is homogeneous. However such . are rare.
15#
發(fā)表于 2025-3-24 05:59:33 | 只看該作者
https://doi.org/10.1007/978-3-0348-7962-0In this chapter, we consider the equation . where we denote . = |x|.
16#
發(fā)表于 2025-3-24 10:27:15 | 只看該作者
Industrial Marketing GenerationsThe Laplace operator possesses a remarkable feature of monotonicity permitting us to study the solvability of elliptic problems. The statement is given in Theorem 25.1.
17#
發(fā)表于 2025-3-24 12:50:33 | 只看該作者
Classical Variational Method,In this chapter and throughout the book, we shall consider boundary problems of the form. Functions . : ?. x ? → ? are supposed to satisfy a so-called Carathéodory condition, i.e., to be continuous with respect to . for almost all x ∈ ?. and measurable in x for all . ∈ ?.
18#
發(fā)表于 2025-3-24 17:58:22 | 只看該作者
Variational Methods for Eigenvalue Problems,Up to now we have studied problems of a coercive type. Investigation of noncoercive problems requires other methods. One of the ways is the reduction of an original elliptic problem to a new one with a free parameter (eigenvalue) and the investigation of this new problem, for example, by the method of a conditional extremum.
19#
發(fā)表于 2025-3-24 20:40:49 | 只看該作者
20#
發(fā)表于 2025-3-25 01:34:05 | 只看該作者
Radial Solutions: The ODE Method,In this chapter, we consider the equation . where we denote . = |x|.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 07:38
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
资溪县| 北流市| 贵溪市| 凤凰县| 龙山县| 平邑县| 如皋市| 射阳县| 桓仁| 拉萨市| 六盘水市| 新安县| 游戏| 洛川县| 义马市| 武强县| 凯里市| 辽阳县| 樟树市| 德阳市| 灵丘县| 云霄县| 威远县| 梓潼县| 马尔康县| 临湘市| 定西市| 托克逊县| 五莲县| 平湖市| 闽侯县| 卢氏县| 鄂伦春自治旗| 峡江县| 石台县| 衡水市| 专栏| 嘉义县| 张家川| 岳普湖县| 谢通门县|