找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Entire Solutions of Semilinear Elliptic Equations; I. Kuzin,S. Pohozaev Book 1997 Bikh?user Verlag 1997 Finite.Identity.Invariant.equation

[復(fù)制鏈接]
查看: 46612|回復(fù): 37
樓主
發(fā)表于 2025-3-21 17:09:04 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Entire Solutions of Semilinear Elliptic Equations
編輯I. Kuzin,S. Pohozaev
視頻videohttp://file.papertrans.cn/312/311649/311649.mp4
叢書(shū)名稱(chēng)Progress in Nonlinear Differential Equations and Their Applications
圖書(shū)封面Titlebook: Entire Solutions of Semilinear Elliptic Equations;  I. Kuzin,S. Pohozaev Book 1997 Bikh?user Verlag 1997 Finite.Identity.Invariant.equation
描述.Semilinear elliptic equations play an important role in many areas of mathematics and its applications to physics and other sciences. This book presents a wealth of modern methods to solve such equations, including the systematic use of the Pohozaev identities for the description of sharp estimates for radial solutions and the fibring method. Existence results for equations with supercritical growth and non-zero right-hand sides are given..Readers of this exposition will be advanced students and researchers in mathematics, physics and other sciences who want to learn about specific methods to tackle problems involving semilinear elliptic equations..
出版日期Book 1997
關(guān)鍵詞Finite; Identity; Invariant; equation; function; mathematics; theorem
版次1
doihttps://doi.org/10.1007/978-3-0348-9250-6
isbn_softcover978-3-0348-9962-8
isbn_ebook978-3-0348-9250-6Series ISSN 1421-1750 Series E-ISSN 2374-0280
issn_series 1421-1750
copyrightBikh?user Verlag 1997
The information of publication is updating

書(shū)目名稱(chēng)Entire Solutions of Semilinear Elliptic Equations影響因子(影響力)




書(shū)目名稱(chēng)Entire Solutions of Semilinear Elliptic Equations影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Entire Solutions of Semilinear Elliptic Equations網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Entire Solutions of Semilinear Elliptic Equations網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Entire Solutions of Semilinear Elliptic Equations被引頻次




書(shū)目名稱(chēng)Entire Solutions of Semilinear Elliptic Equations被引頻次學(xué)科排名




書(shū)目名稱(chēng)Entire Solutions of Semilinear Elliptic Equations年度引用




書(shū)目名稱(chēng)Entire Solutions of Semilinear Elliptic Equations年度引用學(xué)科排名




書(shū)目名稱(chēng)Entire Solutions of Semilinear Elliptic Equations讀者反饋




書(shū)目名稱(chēng)Entire Solutions of Semilinear Elliptic Equations讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶(hù)組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:29:11 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:37:26 | 只看該作者
地板
發(fā)表于 2025-3-22 05:56:24 | 只看該作者
1421-1750 book presents a wealth of modern methods to solve such equations, including the systematic use of the Pohozaev identities for the description of sharp estimates for radial solutions and the fibring method. Existence results for equations with supercritical growth and non-zero right-hand sides are gi
5#
發(fā)表于 2025-3-22 12:17:16 | 只看該作者
6#
發(fā)表于 2025-3-22 15:30:23 | 只看該作者
https://doi.org/10.1057/978-1-349-71325-7s of this type have many applications. For instance, many natural processes can be described by evolution equations . where . is a real-valued function. Such equations are called reaction-diffusion equations and stationary states of (0.2) are described by (0.1).
7#
發(fā)表于 2025-3-22 20:47:55 | 只看該作者
8#
發(fā)表于 2025-3-22 21:51:45 | 只看該作者
9#
發(fā)表于 2025-3-23 03:56:24 | 只看該作者
Progress in Nonlinear Differential Equations and Their Applicationshttp://image.papertrans.cn/e/image/311649.jpg
10#
發(fā)表于 2025-3-23 06:12:04 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 09:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
通化市| 专栏| 大悟县| 苏尼特右旗| 山东省| 文化| 霍林郭勒市| 尉氏县| 武冈市| 苍溪县| 余江县| 紫阳县| 高碑店市| 华蓥市| 轮台县| 石渠县| 拉孜县| 山西省| 长治市| 额济纳旗| 新余市| 华安县| 高淳县| 基隆市| 日土县| 中宁县| 鸡泽县| 丹东市| 辽中县| 辽宁省| 岚皋县| 来安县| 安顺市| 鹿邑县| 浮山县| 桐柏县| 石泉县| 望奎县| 仙桃市| 沐川县| 股票|