找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Entire Slice Regular Functions; Fabrizio Colombo,Irene Sabadini,Daniele C. Struppa Book 2016 The Author(s) 2016 quaternions.slice regulari

[復(fù)制鏈接]
查看: 50625|回復(fù): 36
樓主
發(fā)表于 2025-3-21 16:35:29 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Entire Slice Regular Functions
編輯Fabrizio Colombo,Irene Sabadini,Daniele C. Struppa
視頻videohttp://file.papertrans.cn/312/311648/311648.mp4
概述Presents new results and advances in (hyper) complex analysis.Introduces the theory of entire functions of a quaternionic variable.Supports and promotes further research by offering a rich and represe
叢書名稱SpringerBriefs in Mathematics
圖書封面Titlebook: Entire Slice Regular Functions;  Fabrizio Colombo,Irene Sabadini,Daniele C. Struppa Book 2016 The Author(s) 2016 quaternions.slice regulari
描述.This Briefs volume develops the theory of entire slice regular functions.?It is the first self-contained, monographic work on the subject, offering all the necessary background information and detailed studies on several central topics, including estimates on the minimum modulus of regular functions, relations between Taylor coefficients and the growth of entire functions, density of their zeros, and the universality properties. The proofs presented here shed new light on the nature of the quaternionic setting and provide inspiration for further research directions..Also featuring an exhaustive reference list, the book offers a valuable resource for graduate students, postgraduate students and researchers in various areas of mathematical analysis, in particular hypercomplex analysis and approximation theory..
出版日期Book 2016
關(guān)鍵詞quaternions; slice regularity; entire functions; infinite products; growth conditions; universality prope
版次1
doihttps://doi.org/10.1007/978-3-319-49265-0
isbn_softcover978-3-319-49264-3
isbn_ebook978-3-319-49265-0Series ISSN 2191-8198 Series E-ISSN 2191-8201
issn_series 2191-8198
copyrightThe Author(s) 2016
The information of publication is updating

書目名稱Entire Slice Regular Functions影響因子(影響力)




書目名稱Entire Slice Regular Functions影響因子(影響力)學(xué)科排名




書目名稱Entire Slice Regular Functions網(wǎng)絡(luò)公開度




書目名稱Entire Slice Regular Functions網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Entire Slice Regular Functions被引頻次




書目名稱Entire Slice Regular Functions被引頻次學(xué)科排名




書目名稱Entire Slice Regular Functions年度引用




書目名稱Entire Slice Regular Functions年度引用學(xué)科排名




書目名稱Entire Slice Regular Functions讀者反饋




書目名稱Entire Slice Regular Functions讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:43:03 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:36:38 | 只看該作者
on. We prove some brand new results, like the Jensen and Carathéodory theorem. These results are not immediate extensions of the analogous results in the complex setting. We then discuss a property of almost universality of entire slice regular functions. We conclude the chapter discussing functions of exponential type and the Borel transform.
地板
發(fā)表于 2025-3-22 07:16:31 | 只看該作者
5#
發(fā)表于 2025-3-22 11:13:56 | 只看該作者
6#
發(fā)表于 2025-3-22 14:39:39 | 只看該作者
7#
發(fā)表于 2025-3-22 20:02:44 | 只看該作者
Fabrizio Colombo,Irene Sabadini,Daniele C. StruppaPresents new results and advances in (hyper) complex analysis.Introduces the theory of entire functions of a quaternionic variable.Supports and promotes further research by offering a rich and represe
8#
發(fā)表于 2025-3-22 22:36:16 | 只看該作者
SpringerBriefs in Mathematicshttp://image.papertrans.cn/e/image/311648.jpg
9#
發(fā)表于 2025-3-23 01:44:39 | 只看該作者
10#
發(fā)表于 2025-3-23 05:39:12 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-22 14:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
永济市| 乌拉特前旗| 黄梅县| 华坪县| 介休市| 凤阳县| 邳州市| 宿松县| 鄢陵县| 台中县| 合肥市| 滨海县| 新巴尔虎左旗| 万宁市| 涟源市| 衡东县| 连江县| 金华市| 洛阳市| 墨江| 当雄县| 平江县| 嘉善县| 当雄县| 巴林左旗| 北辰区| 盐亭县| 鞍山市| 马关县| 延寿县| 余庆县| 九台市| 曲松县| 高阳县| 衡东县| 公安县| 理塘县| 镇雄县| 长宁区| 娄底市| 舟山市|