找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Entire Slice Regular Functions; Fabrizio Colombo,Irene Sabadini,Daniele C. Struppa Book 2016 The Author(s) 2016 quaternions.slice regulari

[復(fù)制鏈接]
查看: 50632|回復(fù): 36
樓主
發(fā)表于 2025-3-21 16:35:29 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Entire Slice Regular Functions
編輯Fabrizio Colombo,Irene Sabadini,Daniele C. Struppa
視頻videohttp://file.papertrans.cn/312/311648/311648.mp4
概述Presents new results and advances in (hyper) complex analysis.Introduces the theory of entire functions of a quaternionic variable.Supports and promotes further research by offering a rich and represe
叢書名稱SpringerBriefs in Mathematics
圖書封面Titlebook: Entire Slice Regular Functions;  Fabrizio Colombo,Irene Sabadini,Daniele C. Struppa Book 2016 The Author(s) 2016 quaternions.slice regulari
描述.This Briefs volume develops the theory of entire slice regular functions.?It is the first self-contained, monographic work on the subject, offering all the necessary background information and detailed studies on several central topics, including estimates on the minimum modulus of regular functions, relations between Taylor coefficients and the growth of entire functions, density of their zeros, and the universality properties. The proofs presented here shed new light on the nature of the quaternionic setting and provide inspiration for further research directions..Also featuring an exhaustive reference list, the book offers a valuable resource for graduate students, postgraduate students and researchers in various areas of mathematical analysis, in particular hypercomplex analysis and approximation theory..
出版日期Book 2016
關(guān)鍵詞quaternions; slice regularity; entire functions; infinite products; growth conditions; universality prope
版次1
doihttps://doi.org/10.1007/978-3-319-49265-0
isbn_softcover978-3-319-49264-3
isbn_ebook978-3-319-49265-0Series ISSN 2191-8198 Series E-ISSN 2191-8201
issn_series 2191-8198
copyrightThe Author(s) 2016
The information of publication is updating

書目名稱Entire Slice Regular Functions影響因子(影響力)




書目名稱Entire Slice Regular Functions影響因子(影響力)學(xué)科排名




書目名稱Entire Slice Regular Functions網(wǎng)絡(luò)公開度




書目名稱Entire Slice Regular Functions網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Entire Slice Regular Functions被引頻次




書目名稱Entire Slice Regular Functions被引頻次學(xué)科排名




書目名稱Entire Slice Regular Functions年度引用




書目名稱Entire Slice Regular Functions年度引用學(xué)科排名




書目名稱Entire Slice Regular Functions讀者反饋




書目名稱Entire Slice Regular Functions讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:43:03 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:36:38 | 只看該作者
on. We prove some brand new results, like the Jensen and Carathéodory theorem. These results are not immediate extensions of the analogous results in the complex setting. We then discuss a property of almost universality of entire slice regular functions. We conclude the chapter discussing functions of exponential type and the Borel transform.
地板
發(fā)表于 2025-3-22 07:16:31 | 只看該作者
5#
發(fā)表于 2025-3-22 11:13:56 | 只看該作者
6#
發(fā)表于 2025-3-22 14:39:39 | 只看該作者
7#
發(fā)表于 2025-3-22 20:02:44 | 只看該作者
Fabrizio Colombo,Irene Sabadini,Daniele C. StruppaPresents new results and advances in (hyper) complex analysis.Introduces the theory of entire functions of a quaternionic variable.Supports and promotes further research by offering a rich and represe
8#
發(fā)表于 2025-3-22 22:36:16 | 只看該作者
SpringerBriefs in Mathematicshttp://image.papertrans.cn/e/image/311648.jpg
9#
發(fā)表于 2025-3-23 01:44:39 | 只看該作者
10#
發(fā)表于 2025-3-23 05:39:12 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-22 23:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
长汀县| 罗田县| 山阳县| 海南省| 界首市| 安福县| 三台县| 万山特区| 裕民县| 睢宁县| 永昌县| 钟祥市| 鞍山市| 北票市| 黄龙县| 双牌县| 玉环县| 吐鲁番市| 当阳市| 景洪市| 法库县| 同江市| 兰溪市| 东海县| 莫力| 上林县| 泽州县| 黔西县| 黄浦区| 贺州市| 中阳县| 诸城市| 班玛县| 昆山市| 宿松县| 鄱阳县| 襄城县| 博罗县| 黎平县| 乐至县| 九寨沟县|