找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Entangled State Representations in Quantum Optics; Xiang-Guo Meng,Ji-Suo Wang,Bao-Long Liang Book 2023 Science Press 2023 Integration meth

[復(fù)制鏈接]
樓主: Systole
21#
發(fā)表于 2025-3-25 06:08:02 | 只看該作者
Dynamics of Two-Body Hamiltonian Systems,The theory of representation in quantum mechanics was first proposed by Dirac [1]. At the same time, he also pointed out that in solving specific dynamic problems, choosing the appropriate representation according to the characteristics of the Hamiltonian of the system is conducive to simplifying the calculation and thus greatly saving labor.
22#
發(fā)表于 2025-3-25 09:46:31 | 只看該作者
,Wigner Distribution Function and?Quantum Tomogram via?Entangled State Representations,The quasi-probability distribution functions (e.g., Wigner distribution function) in quantum mechanics have important applications in many fields of physics [1, 2, 3].
23#
發(fā)表于 2025-3-25 15:04:49 | 只看該作者
24#
發(fā)表于 2025-3-25 16:05:36 | 只看該作者
Generalized Binomial Theorems and Multi-variable Special Polynomials Involving Hermite Polynomials,Hermite polynomials as a kind of well-known special polynomials can be used widely in mathematics and physics because they possess some fundamental properties (e.g., orthogonality and completeness) and relevant identities (e.g., recurrence formula and generating function).
25#
發(fā)表于 2025-3-25 20:02:19 | 只看該作者
Quantum Theory of Mesoscopic Circuit Systems,In recent year, with the rapid development of nanotechnology and microelectronics, mesoscopic circuits have attracted extensive attention of physicists [1, 2, 3, 4].
26#
發(fā)表于 2025-3-26 01:10:18 | 只看該作者
27#
發(fā)表于 2025-3-26 08:10:21 | 只看該作者
28#
發(fā)表于 2025-3-26 08:45:00 | 只看該作者
29#
發(fā)表于 2025-3-26 15:43:51 | 只看該作者
30#
發(fā)表于 2025-3-26 18:51:58 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-22 12:09
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
谢通门县| 万载县| 萝北县| 闽侯县| 渭南市| 苏尼特左旗| 建宁县| 新平| 福清市| 盈江县| 临洮县| 镇远县| 沈丘县| 松潘县| 政和县| 尚义县| 威远县| 腾冲县| 尉氏县| 涞源县| 马公市| 连城县| 巍山| 南宫市| 宜章县| 新昌县| 乐至县| 元谋县| 宕昌县| 白银市| 清原| 鄂托克旗| 万源市| 沅陵县| 绵阳市| 西乡县| 灵川县| 苍溪县| 福州市| 昌吉市| 桂林市|