找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Endotrivial Modules; Nadia Mazza Book 2019 The Author(s), under exclusive license to Springer Nature Switzerland AG 2019 Endotrivial modul

[復(fù)制鏈接]
查看: 18625|回復(fù): 37
樓主
發(fā)表于 2025-3-21 16:28:33 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Endotrivial Modules
編輯Nadia Mazza
視頻videohttp://file.papertrans.cn/310/309951/309951.mp4
概述First book devoted to endotrivial modules.Collects 50 years of results and numerous examples.Includes background material and up-to-date references
叢書名稱SpringerBriefs in Mathematics
圖書封面Titlebook: Endotrivial Modules;  Nadia Mazza Book 2019 The Author(s), under exclusive license to Springer Nature Switzerland AG 2019 Endotrivial modul
描述This is an in-depth report on the endotrivial modules, an important class of modular representations for finite groups..Following the historical development of the theory, the book starts with a review of the necessary definitions and some key examples. The main results obtained using traditional techniques are then presented, followed by more recent results such as the work of Grodal inspired by algebraic topology. In the last part of the book original methods are applied to obtain the group of endotrivial modules for certain very important groups.? .An accessible reference collecting half a century of research on endotrivial modules, this book will be of interest to researchers in algebra..
出版日期Book 2019
關(guān)鍵詞Endotrivial module; Endo-permutation module; Modular representation; Module categories; Group cohomology
版次1
doihttps://doi.org/10.1007/978-3-030-18156-7
isbn_softcover978-3-030-18155-0
isbn_ebook978-3-030-18156-7Series ISSN 2191-8198 Series E-ISSN 2191-8201
issn_series 2191-8198
copyrightThe Author(s), under exclusive license to Springer Nature Switzerland AG 2019
The information of publication is updating

書目名稱Endotrivial Modules影響因子(影響力)




書目名稱Endotrivial Modules影響因子(影響力)學(xué)科排名




書目名稱Endotrivial Modules網(wǎng)絡(luò)公開度




書目名稱Endotrivial Modules網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Endotrivial Modules被引頻次




書目名稱Endotrivial Modules被引頻次學(xué)科排名




書目名稱Endotrivial Modules年度引用




書目名稱Endotrivial Modules年度引用學(xué)科排名




書目名稱Endotrivial Modules讀者反饋




書目名稱Endotrivial Modules讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:30:45 | 只看該作者
SpringerBriefs in Mathematicshttp://image.papertrans.cn/e/image/309951.jpg
板凳
發(fā)表于 2025-3-22 03:52:03 | 只看該作者
地板
發(fā)表于 2025-3-22 05:46:45 | 只看該作者
https://doi.org/10.1007/978-3-662-63216-1 subject following the historical development of the theory of endotrivial and endo-permutation modules, starting with the results obtained by E. Dade in the late 70s. We also present some key examples of endotrivial modules.
5#
發(fā)表于 2025-3-22 10:15:17 | 只看該作者
https://doi.org/10.1007/978-3-322-97246-0up. We then discuss the rationality question of lifting endotrivial modules. In this chapter, we use traditional methods in modular representation theory, such as the theory of vertices, sources of modules and the Green’s correspondence.
6#
發(fā)表于 2025-3-22 13:41:02 | 只看該作者
https://doi.org/10.1007/978-3-322-96013-9n the action of G by conjugation on its noncyclic elementary abelian p-subgroups. So, we make a detour via the category of noncyclic elementary abelian p-subgroups of a finite group. We end the chapter with results about finding “torsionfree” generators, and we present various partial results, including very recent ones.
7#
發(fā)表于 2025-3-22 18:30:22 | 只看該作者
https://doi.org/10.1007/978-3-658-27608-9t suffice in general and several ingenious methods have been devised to answer this question: using ordinary character theory, methods derived from algebraic geometry, and methods using homotopy theory. We present each of these and give a few examples of their successful applications.
8#
發(fā)表于 2025-3-23 00:54:34 | 只看該作者
Wenn es vermeintlich am K?nnen fehltroups and their covering groups, finite groups of Lie type, and sporadic simple groups and their covering groups. This final chapter ends with an idiosyncratic observation, leading to an open question.
9#
發(fā)表于 2025-3-23 04:08:41 | 只看該作者
Introduction,ons needed in finite group theory, modular representation theory, homological algebra, and, in view of recent developments in the study of endotrivial modules, we also include some concepts from algebraic topology.
10#
發(fā)表于 2025-3-23 09:06:13 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 07:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
永昌县| 惠东县| 岑巩县| 息烽县| 靖州| 新余市| 察雅县| 伊春市| 罗江县| 基隆市| 东乌| 东城区| 行唐县| 承德市| 彩票| 雅安市| 康定县| 洪雅县| 修文县| 南昌市| 昌黎县| 浙江省| 海原县| 三台县| 黄骅市| 从江县| 兖州市| 清徐县| 罗山县| 察哈| 新泰市| 吉木萨尔县| 信丰县| 阿拉善右旗| 柳林县| 兴化市| 正宁县| 纳雍县| 明溪县| 湖口县| 阿合奇县|