找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Endotrivial Modules; Nadia Mazza Book 2019 The Author(s), under exclusive license to Springer Nature Switzerland AG 2019 Endotrivial modul

[復(fù)制鏈接]
樓主: DIGN
11#
發(fā)表于 2025-3-23 11:22:11 | 只看該作者
12#
發(fā)表于 2025-3-23 15:06:02 | 只看該作者
,The Torsionfree Part of the Group of?Endotrivial Modules,n the action of G by conjugation on its noncyclic elementary abelian p-subgroups. So, we make a detour via the category of noncyclic elementary abelian p-subgroups of a finite group. We end the chapter with results about finding “torsionfree” generators, and we present various partial results, including very recent ones.
13#
發(fā)表于 2025-3-23 20:36:17 | 只看該作者
14#
發(fā)表于 2025-3-23 23:43:46 | 只看該作者
Endotrivial Modules for Very Important Groups,roups and their covering groups, finite groups of Lie type, and sporadic simple groups and their covering groups. This final chapter ends with an idiosyncratic observation, leading to an open question.
15#
發(fā)表于 2025-3-24 03:55:30 | 只看該作者
16#
發(fā)表于 2025-3-24 09:59:23 | 只看該作者
Datenerfassung und Datenbereinigung,ons needed in finite group theory, modular representation theory, homological algebra, and, in view of recent developments in the study of endotrivial modules, we also include some concepts from algebraic topology.
17#
發(fā)表于 2025-3-24 12:59:27 | 只看該作者
18#
發(fā)表于 2025-3-24 15:09:07 | 只看該作者
19#
發(fā)表于 2025-3-24 23:05:46 | 只看該作者
20#
發(fā)表于 2025-3-25 00:55:37 | 只看該作者
https://doi.org/10.1007/978-3-658-27608-9t suffice in general and several ingenious methods have been devised to answer this question: using ordinary character theory, methods derived from algebraic geometry, and methods using homotopy theory. We present each of these and give a few examples of their successful applications.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 09:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
万荣县| 宜兴市| 平阳县| 汤阴县| 苍梧县| 宣威市| 永清县| 娄烦县| 宁晋县| 龙胜| 义乌市| 泰顺县| 同江市| 阿荣旗| 克拉玛依市| 尤溪县| 锡林浩特市| 襄垣县| 青铜峡市| 宜州市| 昌图县| 苍梧县| 琼中| 嘉定区| 名山县| 吕梁市| 鹿邑县| 沙田区| 隆化县| 石景山区| 宜兴市| 乐平市| 宜都市| 广州市| 旺苍县| 灵山县| 郯城县| 新建县| 肃宁县| 高台县| 鹤庆县|