找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Emotion Recognition using Speech Features; K. Sreenivasa Rao,Shashidhar G. Koolagudi Book 2013 Springer Science+Business Media New York 20

[復(fù)制鏈接]
樓主: 連結(jié)
11#
發(fā)表于 2025-3-23 10:39:10 | 只看該作者
K. Sreenivasa Rao,Shashidhar G. KoolagudiDiscusses complete state-of -art features, models and databases in the context of emotion recognition.Explores implicit and explicit excitation source features for discriminating the emotions.Proposes
12#
發(fā)表于 2025-3-23 16:02:05 | 只看該作者
SpringerBriefs in Speech Technologyhttp://image.papertrans.cn/e/image/308628.jpg
13#
發(fā)表于 2025-3-23 21:56:37 | 只看該作者
14#
發(fā)表于 2025-3-24 00:30:25 | 只看該作者
Summary and Conclusions,This chapter summarizes the research work presented in this book, highlights the contributions of the work and discusses the scope for future work.
15#
發(fā)表于 2025-3-24 06:14:14 | 只看該作者
16#
發(fā)表于 2025-3-24 07:08:57 | 只看該作者
Book 2013s for capturing emotion-specific information for distinguishing different emotions.? The content of this book is important for designing and developing? natural and sophisticated speech systems. In this Brief, Drs. Rao and Koolagudi lead a discussion of how emotion-specific information is embedded i
17#
發(fā)表于 2025-3-24 12:18:24 | 只看該作者
H. J. Goldschmidt D.Sc., F.Inst.P., F.I.M.) are given. Two emotional speech databases are introduced to validate the proposed excitation source features. Functionality of classification models such as auto-associative neural networks and support vector machines is briefly explained. Finally, recognition performance using the proposed excitation source features is analyzed in detail.
18#
發(fā)表于 2025-3-24 15:48:18 | 只看該作者
Emotion Recognition Using Excitation Source Information,) are given. Two emotional speech databases are introduced to validate the proposed excitation source features. Functionality of classification models such as auto-associative neural networks and support vector machines is briefly explained. Finally, recognition performance using the proposed excitation source features is analyzed in detail.
19#
發(fā)表于 2025-3-24 21:28:15 | 只看該作者
2191-737X ion source features for discriminating the emotions.Proposes“Emotion Recognition Using Speech Features” provides coverage of emotion-specific features present in speech. The author also discusses suitable models for capturing emotion-specific information for distinguishing different emotions.? The c
20#
發(fā)表于 2025-3-25 02:48:07 | 只看該作者
Diffus verteiltes interstellares Gas,cognition systems developed using excitation source, vocal tract system and prosodic features is briefly presented. Basic pattern classification models used for discriminating the emotions are discussed in brief. Finally, the chapter concludes with motivation and scope of the work presented in this book.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 11:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
万载县| 连江县| 泗洪县| 高阳县| 西林县| 宿州市| 绍兴市| 砚山县| 绵竹市| 新巴尔虎右旗| 安福县| 格尔木市| 金昌市| 湖州市| 奉节县| 平乡县| 邹城市| 海晏县| 扬中市| 公安县| 哈尔滨市| 荥经县| 黄大仙区| 芜湖市| 西华县| 河南省| 夏邑县| 庆云县| 仙居县| 饶阳县| 方正县| 阳高县| 措勤县| 谷城县| 长宁区| 兴宁市| 揭东县| 靖州| 许昌县| 宿迁市| 大新县|