找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Emotion Recognition using Speech Features; K. Sreenivasa Rao,Shashidhar G. Koolagudi Book 2013 Springer Science+Business Media New York 20

[復(fù)制鏈接]
查看: 51827|回復(fù): 38
樓主
發(fā)表于 2025-3-21 19:33:56 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Emotion Recognition using Speech Features
編輯K. Sreenivasa Rao,Shashidhar G. Koolagudi
視頻videohttp://file.papertrans.cn/309/308628/308628.mp4
概述Discusses complete state-of -art features, models and databases in the context of emotion recognition.Explores implicit and explicit excitation source features for discriminating the emotions.Proposes
叢書名稱SpringerBriefs in Speech Technology
圖書封面Titlebook: Emotion Recognition using Speech Features;  K. Sreenivasa Rao,Shashidhar G. Koolagudi Book 2013 Springer Science+Business Media New York 20
描述“Emotion Recognition Using Speech Features” provides coverage of emotion-specific features present in speech. The author also discusses suitable models for capturing emotion-specific information for distinguishing different emotions.? The content of this book is important for designing and developing? natural and sophisticated speech systems. In this Brief, Drs. Rao and Koolagudi lead a discussion of how emotion-specific information is embedded in speech and how to acquire emotion-specific knowledge using appropriate statistical models. Additionally, the authors provide information about exploiting multiple evidences derived from various features and models. The acquired emotion-specific knowledge is useful for synthesizing emotions. Features includes discussion of:? Global and local prosodic features at syllable, word and phrase levels, helpful for capturing emotion-discriminative information; ? Exploiting complementary evidences obtained from excitation sources, vocal tract systems and prosodic features in order to enhance the emotion recognition performance; ? Proposed multi-stage and hybrid models for improving the emotion recognition performance. This brief is for researchers
出版日期Book 2013
關(guān)鍵詞Emotion Recognition; Emotion-discriminative Information; Emotion-specific Information; Excitation Sourc
版次1
doihttps://doi.org/10.1007/978-1-4614-5143-3
isbn_softcover978-1-4614-5142-6
isbn_ebook978-1-4614-5143-3Series ISSN 2191-737X Series E-ISSN 2191-7388
issn_series 2191-737X
copyrightSpringer Science+Business Media New York 2013
The information of publication is updating

書目名稱Emotion Recognition using Speech Features影響因子(影響力)




書目名稱Emotion Recognition using Speech Features影響因子(影響力)學(xué)科排名




書目名稱Emotion Recognition using Speech Features網(wǎng)絡(luò)公開度




書目名稱Emotion Recognition using Speech Features網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Emotion Recognition using Speech Features被引頻次




書目名稱Emotion Recognition using Speech Features被引頻次學(xué)科排名




書目名稱Emotion Recognition using Speech Features年度引用




書目名稱Emotion Recognition using Speech Features年度引用學(xué)科排名




書目名稱Emotion Recognition using Speech Features讀者反饋




書目名稱Emotion Recognition using Speech Features讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:23:25 | 只看該作者
2191-737X systems and prosodic features in order to enhance the emotion recognition performance; ? Proposed multi-stage and hybrid models for improving the emotion recognition performance. This brief is for researchers 978-1-4614-5142-6978-1-4614-5143-3Series ISSN 2191-737X Series E-ISSN 2191-7388
板凳
發(fā)表于 2025-3-22 02:20:14 | 只看該作者
Henning F. Harmuth,Konstantin A. Lukinmotions from psychological and engineering view points. Influence of emotions on the characteristics of speech production system is briefly mentioned. Role of various features extracted from excitation source, vocal tract system and prosody, are discussed in the context of developing various speech
地板
發(fā)表于 2025-3-22 04:33:24 | 只看該作者
5#
發(fā)表于 2025-3-22 08:55:07 | 只看該作者
H. J. Goldschmidt D.Sc., F.Inst.P., F.I.M.urce information for emotion recognition is illustrated by demonstrating the speech files with source information alone. Details of extraction of proposed excitation source features ((i) Sequence of LP residual samples, (ii) LP residual phase, (iii) Epoch parameters and (iv) Glottal pulse parameters
6#
發(fā)表于 2025-3-22 14:17:36 | 只看該作者
Extracellular Matrix and Cardiac Remodelingpstral coefficients (LPCCs) and mel frequency cepstral coefficients (MFCCs) are used as the correlates of vocal tract information for discriminating the emotions. In addition to LPCCs and MFCCs, formant related features are also explored in this work for recognizing emotions from speech. Extraction
7#
發(fā)表于 2025-3-22 20:34:59 | 只看該作者
B. Stea,D. Shimm,J. Kittelson,T. Cetaseatures to recognize the emotions is illustrated using the gross statistics and time varying patterns of prosodic parameters. Global prosodic features representing the gross statistics of prosody and local prosodic features representing the finer variations in prosody are introduced in this chapter
8#
發(fā)表于 2025-3-22 23:50:59 | 只看該作者
9#
發(fā)表于 2025-3-23 02:55:34 | 只看該作者
Emotion Recognition using Speech Features978-1-4614-5143-3Series ISSN 2191-737X Series E-ISSN 2191-7388
10#
發(fā)表于 2025-3-23 08:26:56 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 18:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
泰兴市| 延长县| 桦川县| 茌平县| 伊宁县| 栾川县| 望江县| 广宁县| 长治县| 邯郸县| 巴彦县| 渝中区| 泊头市| 西盟| 正定县| 二连浩特市| 汨罗市| 丘北县| 盐亭县| 衡山县| 丹江口市| 县级市| 芦溪县| 灯塔市| 神池县| 东乌| 邵阳县| 四子王旗| 石嘴山市| 揭东县| 轮台县| 樟树市| 紫金县| 黔西| 滨州市| 通江县| 忻州市| 海城市| 靖江市| 莲花县| 耒阳市|