找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Emotion Recognition using Speech Features; K. Sreenivasa Rao,Shashidhar G. Koolagudi Book 2013 Springer Science+Business Media New York 20

[復(fù)制鏈接]
樓主: 連結(jié)
11#
發(fā)表于 2025-3-23 10:39:10 | 只看該作者
K. Sreenivasa Rao,Shashidhar G. KoolagudiDiscusses complete state-of -art features, models and databases in the context of emotion recognition.Explores implicit and explicit excitation source features for discriminating the emotions.Proposes
12#
發(fā)表于 2025-3-23 16:02:05 | 只看該作者
SpringerBriefs in Speech Technologyhttp://image.papertrans.cn/e/image/308628.jpg
13#
發(fā)表于 2025-3-23 21:56:37 | 只看該作者
14#
發(fā)表于 2025-3-24 00:30:25 | 只看該作者
Summary and Conclusions,This chapter summarizes the research work presented in this book, highlights the contributions of the work and discusses the scope for future work.
15#
發(fā)表于 2025-3-24 06:14:14 | 只看該作者
16#
發(fā)表于 2025-3-24 07:08:57 | 只看該作者
Book 2013s for capturing emotion-specific information for distinguishing different emotions.? The content of this book is important for designing and developing? natural and sophisticated speech systems. In this Brief, Drs. Rao and Koolagudi lead a discussion of how emotion-specific information is embedded i
17#
發(fā)表于 2025-3-24 12:18:24 | 只看該作者
H. J. Goldschmidt D.Sc., F.Inst.P., F.I.M.) are given. Two emotional speech databases are introduced to validate the proposed excitation source features. Functionality of classification models such as auto-associative neural networks and support vector machines is briefly explained. Finally, recognition performance using the proposed excitation source features is analyzed in detail.
18#
發(fā)表于 2025-3-24 15:48:18 | 只看該作者
Emotion Recognition Using Excitation Source Information,) are given. Two emotional speech databases are introduced to validate the proposed excitation source features. Functionality of classification models such as auto-associative neural networks and support vector machines is briefly explained. Finally, recognition performance using the proposed excitation source features is analyzed in detail.
19#
發(fā)表于 2025-3-24 21:28:15 | 只看該作者
2191-737X ion source features for discriminating the emotions.Proposes“Emotion Recognition Using Speech Features” provides coverage of emotion-specific features present in speech. The author also discusses suitable models for capturing emotion-specific information for distinguishing different emotions.? The c
20#
發(fā)表于 2025-3-25 02:48:07 | 只看該作者
Diffus verteiltes interstellares Gas,cognition systems developed using excitation source, vocal tract system and prosodic features is briefly presented. Basic pattern classification models used for discriminating the emotions are discussed in brief. Finally, the chapter concludes with motivation and scope of the work presented in this book.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 17:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
康定县| 东阳市| 敦化市| 金平| 麻栗坡县| 万荣县| 鸡西市| 淅川县| 丹巴县| 宜州市| 红河县| 鹤山市| 福州市| 鄂温| 措美县| 连平县| 土默特左旗| 康马县| 台州市| 前郭尔| 临湘市| 正镶白旗| 罗平县| 黄浦区| 亚东县| 子长县| 庐江县| 巴塘县| 隆尧县| 宾阳县| 蕉岭县| 宜州市| 佛冈县| 濮阳县| 定安县| 汤阴县| 珠海市| 新乡县| 井陉县| 阿图什市| 固原市|