找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Emotion Recognition using Speech Features; K. Sreenivasa Rao,Shashidhar G. Koolagudi Book 2013 Springer Science+Business Media New York 20

[復(fù)制鏈接]
樓主: 連結(jié)
11#
發(fā)表于 2025-3-23 10:39:10 | 只看該作者
K. Sreenivasa Rao,Shashidhar G. KoolagudiDiscusses complete state-of -art features, models and databases in the context of emotion recognition.Explores implicit and explicit excitation source features for discriminating the emotions.Proposes
12#
發(fā)表于 2025-3-23 16:02:05 | 只看該作者
SpringerBriefs in Speech Technologyhttp://image.papertrans.cn/e/image/308628.jpg
13#
發(fā)表于 2025-3-23 21:56:37 | 只看該作者
14#
發(fā)表于 2025-3-24 00:30:25 | 只看該作者
Summary and Conclusions,This chapter summarizes the research work presented in this book, highlights the contributions of the work and discusses the scope for future work.
15#
發(fā)表于 2025-3-24 06:14:14 | 只看該作者
16#
發(fā)表于 2025-3-24 07:08:57 | 只看該作者
Book 2013s for capturing emotion-specific information for distinguishing different emotions.? The content of this book is important for designing and developing? natural and sophisticated speech systems. In this Brief, Drs. Rao and Koolagudi lead a discussion of how emotion-specific information is embedded i
17#
發(fā)表于 2025-3-24 12:18:24 | 只看該作者
H. J. Goldschmidt D.Sc., F.Inst.P., F.I.M.) are given. Two emotional speech databases are introduced to validate the proposed excitation source features. Functionality of classification models such as auto-associative neural networks and support vector machines is briefly explained. Finally, recognition performance using the proposed excitation source features is analyzed in detail.
18#
發(fā)表于 2025-3-24 15:48:18 | 只看該作者
Emotion Recognition Using Excitation Source Information,) are given. Two emotional speech databases are introduced to validate the proposed excitation source features. Functionality of classification models such as auto-associative neural networks and support vector machines is briefly explained. Finally, recognition performance using the proposed excitation source features is analyzed in detail.
19#
發(fā)表于 2025-3-24 21:28:15 | 只看該作者
2191-737X ion source features for discriminating the emotions.Proposes“Emotion Recognition Using Speech Features” provides coverage of emotion-specific features present in speech. The author also discusses suitable models for capturing emotion-specific information for distinguishing different emotions.? The c
20#
發(fā)表于 2025-3-25 02:48:07 | 只看該作者
Diffus verteiltes interstellares Gas,cognition systems developed using excitation source, vocal tract system and prosodic features is briefly presented. Basic pattern classification models used for discriminating the emotions are discussed in brief. Finally, the chapter concludes with motivation and scope of the work presented in this book.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 17:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
镇宁| 永新县| 吴旗县| 马关县| 当涂县| 绿春县| 庆安县| 土默特左旗| 中宁县| 南涧| 贺州市| 江达县| 罗甸县| 三门峡市| 昌黎县| 广河县| 田阳县| 吴忠市| 章丘市| 望都县| 五华县| 旌德县| 汉沽区| 齐河县| 静海县| 连平县| 孟村| 莱阳市| 前郭尔| 金寨县| 同仁县| 淮阳县| 泾源县| 巴楚县| 淮南市| 宁津县| 石台县| 镇江市| 龙山县| 开远市| 宜宾县|