找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Embedded Deep Learning; Algorithms, Architec Bert Moons,Daniel Bankman,Marian Verhelst Book 2019 Springer Nature Switzerland AG 2019 Deep L

[復(fù)制鏈接]
查看: 51289|回復(fù): 42
樓主
發(fā)表于 2025-3-21 18:00:16 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Embedded Deep Learning
副標題Algorithms, Architec
編輯Bert Moons,Daniel Bankman,Marian Verhelst
視頻videohttp://file.papertrans.cn/308/307893/307893.mp4
概述Gives a wide overview of a series of effective solutions for energy-efficient neural networks on battery constrained wearable devices.Discusses the optimization of neural networks for embedded deploym
圖書封面Titlebook: Embedded Deep Learning; Algorithms, Architec Bert Moons,Daniel Bankman,Marian Verhelst Book 2019 Springer Nature Switzerland AG 2019 Deep L
描述.This book covers algorithmic and hardware implementation techniques to enable embedded deep learning. The authors describe synergetic design approaches on the application-, algorithmic-, computer architecture-, and circuit-level that will help in achieving the goal of reducing the computational cost of deep learning algorithms. The impact of these techniques is displayed in four silicon prototypes for embedded deep learning..Gives a wide overview of a series of effective solutions for energy-efficient neural networks on battery constrained wearable devices;.Discusses the optimization of neural networks for embedded deployment on all levels of the design hierarchy – applications, algorithms, hardware architectures, and circuits – supported by real silicon prototypes;.Elaborates on how to design efficient Convolutional Neural Network processors, exploiting parallelism and data-reuse, sparse operations, and low-precision computations;.Supports the introduced theory and design concepts by four real silicon prototypes. The physical realization’s implementation and achieved performances are discussed elaborately to illustrated and highlight the introduced cross-layer design concepts..
出版日期Book 2019
關(guān)鍵詞Deep Learning for Computer Architects; Embedded Deep Neural Networks; optimization of a neural network
版次1
doihttps://doi.org/10.1007/978-3-319-99223-5
isbn_softcover978-3-030-07577-4
isbn_ebook978-3-319-99223-5
copyrightSpringer Nature Switzerland AG 2019
The information of publication is updating

書目名稱Embedded Deep Learning影響因子(影響力)




書目名稱Embedded Deep Learning影響因子(影響力)學(xué)科排名




書目名稱Embedded Deep Learning網(wǎng)絡(luò)公開度




書目名稱Embedded Deep Learning網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Embedded Deep Learning被引頻次




書目名稱Embedded Deep Learning被引頻次學(xué)科排名




書目名稱Embedded Deep Learning年度引用




書目名稱Embedded Deep Learning年度引用學(xué)科排名




書目名稱Embedded Deep Learning讀者反饋




書目名稱Embedded Deep Learning讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:24:57 | 只看該作者
Optimized Hierarchical Cascaded Processing,discusses a first . solution for this problem. In this chapter, the wake-up-based detection scenario is generalized to ., where a hierarchy of increasingly complex classifiers, each designed and trained for a specific sub-task, is used to minimize the overall system’s energy cost. An optimal hierarc
板凳
發(fā)表于 2025-3-22 03:14:43 | 只看該作者
Hardware-Algorithm Co-optimizations,discusses hardware aware . solutions for this problem. As an introduction to this topic, this chapter gives an overview of existing work in hardware and neural network co-optimizations. Two own contributions in hardware-algorithm optimization are discussed and compared: network quantization either a
地板
發(fā)表于 2025-3-22 04:42:45 | 只看該作者
5#
發(fā)表于 2025-3-22 11:01:27 | 只看該作者
6#
發(fā)表于 2025-3-22 13:10:05 | 只看該作者
7#
發(fā)表于 2025-3-22 18:21:20 | 只看該作者
Conclusions, Contributions, and Future Work,ained wearable edge devices. Although SotA in many typical machine-learning tasks, deep learning algorithms are also very costly in terms of energy consumption, due to their large amount of required computations and huge model sizes. Because of this, deep learning applications on battery-constrained
8#
發(fā)表于 2025-3-22 21:52:42 | 只看該作者
9#
發(fā)表于 2025-3-23 01:57:05 | 只看該作者
10#
發(fā)表于 2025-3-23 08:29:24 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 23:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
临城县| 白朗县| 榆林市| 新津县| 大埔区| 金阳县| 江山市| 尼木县| 诏安县| 米林县| 海城市| 丰原市| 邢台市| 乌兰浩特市| 武山县| SHOW| 韩城市| 金秀| 家居| 沾益县| 厦门市| 葵青区| 旬邑县| 高青县| 平乡县| 宁津县| 威海市| 元朗区| 交城县| 临澧县| 玉门市| 五河县| 嘉鱼县| 夹江县| 伊宁市| 同心县| 乌兰县| 开远市| 娱乐| 宁陕县| 临夏县|