找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Embedded Deep Learning; Algorithms, Architec Bert Moons,Daniel Bankman,Marian Verhelst Book 2019 Springer Nature Switzerland AG 2019 Deep L

[復制鏈接]
查看: 51294|回復: 42
樓主
發(fā)表于 2025-3-21 18:00:16 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Embedded Deep Learning
副標題Algorithms, Architec
編輯Bert Moons,Daniel Bankman,Marian Verhelst
視頻videohttp://file.papertrans.cn/308/307893/307893.mp4
概述Gives a wide overview of a series of effective solutions for energy-efficient neural networks on battery constrained wearable devices.Discusses the optimization of neural networks for embedded deploym
圖書封面Titlebook: Embedded Deep Learning; Algorithms, Architec Bert Moons,Daniel Bankman,Marian Verhelst Book 2019 Springer Nature Switzerland AG 2019 Deep L
描述.This book covers algorithmic and hardware implementation techniques to enable embedded deep learning. The authors describe synergetic design approaches on the application-, algorithmic-, computer architecture-, and circuit-level that will help in achieving the goal of reducing the computational cost of deep learning algorithms. The impact of these techniques is displayed in four silicon prototypes for embedded deep learning..Gives a wide overview of a series of effective solutions for energy-efficient neural networks on battery constrained wearable devices;.Discusses the optimization of neural networks for embedded deployment on all levels of the design hierarchy – applications, algorithms, hardware architectures, and circuits – supported by real silicon prototypes;.Elaborates on how to design efficient Convolutional Neural Network processors, exploiting parallelism and data-reuse, sparse operations, and low-precision computations;.Supports the introduced theory and design concepts by four real silicon prototypes. The physical realization’s implementation and achieved performances are discussed elaborately to illustrated and highlight the introduced cross-layer design concepts..
出版日期Book 2019
關鍵詞Deep Learning for Computer Architects; Embedded Deep Neural Networks; optimization of a neural network
版次1
doihttps://doi.org/10.1007/978-3-319-99223-5
isbn_softcover978-3-030-07577-4
isbn_ebook978-3-319-99223-5
copyrightSpringer Nature Switzerland AG 2019
The information of publication is updating

書目名稱Embedded Deep Learning影響因子(影響力)




書目名稱Embedded Deep Learning影響因子(影響力)學科排名




書目名稱Embedded Deep Learning網(wǎng)絡公開度




書目名稱Embedded Deep Learning網(wǎng)絡公開度學科排名




書目名稱Embedded Deep Learning被引頻次




書目名稱Embedded Deep Learning被引頻次學科排名




書目名稱Embedded Deep Learning年度引用




書目名稱Embedded Deep Learning年度引用學科排名




書目名稱Embedded Deep Learning讀者反饋




書目名稱Embedded Deep Learning讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 23:24:57 | 只看該作者
Optimized Hierarchical Cascaded Processing,discusses a first . solution for this problem. In this chapter, the wake-up-based detection scenario is generalized to ., where a hierarchy of increasingly complex classifiers, each designed and trained for a specific sub-task, is used to minimize the overall system’s energy cost. An optimal hierarc
板凳
發(fā)表于 2025-3-22 03:14:43 | 只看該作者
Hardware-Algorithm Co-optimizations,discusses hardware aware . solutions for this problem. As an introduction to this topic, this chapter gives an overview of existing work in hardware and neural network co-optimizations. Two own contributions in hardware-algorithm optimization are discussed and compared: network quantization either a
地板
發(fā)表于 2025-3-22 04:42:45 | 只看該作者
5#
發(fā)表于 2025-3-22 11:01:27 | 只看該作者
6#
發(fā)表于 2025-3-22 13:10:05 | 只看該作者
7#
發(fā)表于 2025-3-22 18:21:20 | 只看該作者
Conclusions, Contributions, and Future Work,ained wearable edge devices. Although SotA in many typical machine-learning tasks, deep learning algorithms are also very costly in terms of energy consumption, due to their large amount of required computations and huge model sizes. Because of this, deep learning applications on battery-constrained
8#
發(fā)表于 2025-3-22 21:52:42 | 只看該作者
9#
發(fā)表于 2025-3-23 01:57:05 | 只看該作者
10#
發(fā)表于 2025-3-23 08:29:24 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-17 09:12
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
衡水市| 安丘市| 石城县| 龙里县| 潼关县| 沁源县| 阜南县| 鄂尔多斯市| 清原| 彭泽县| 云阳县| 吴桥县| 新郑市| 焦作市| 高州市| 荔浦县| 安乡县| 庆云县| 襄汾县| 凤庆县| 永善县| 阳谷县| 博客| 陇南市| 蒲江县| 诸暨市| 德钦县| 垣曲县| 宁远县| 广宗县| 理塘县| 伊春市| 凤山市| 高平市| 甘南县| 樟树市| 墨竹工卡县| 濮阳市| 新兴县| 玛沁县| 青铜峡市|