找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Elliptic and Parabolic Problems; A Special Tribute to Catherine Bandle,Henri Berestycki,Giorgio Vergara Book 2005 Birkh?user Basel 2005 Bo

[復(fù)制鏈接]
樓主: STH
31#
發(fā)表于 2025-3-27 00:09:22 | 只看該作者
32#
發(fā)表于 2025-3-27 04:22:57 | 只看該作者
33#
發(fā)表于 2025-3-27 07:57:08 | 只看該作者
https://doi.org/10.1007/978-94-017-6408-7In this paper, we propose a finite volume scheme for the Chen energy transport model. We present numerical results obtained for the simulation of a one-dimensional n.nn. ballistic diode.
34#
發(fā)表于 2025-3-27 12:34:10 | 只看該作者
35#
發(fā)表于 2025-3-27 15:55:31 | 只看該作者
One-Layer Free Boundary Problems with Two Free Boundaries,We study the uniqueness and successive approximation of solutions of a class of two-dimensional steady-state fluid problems involving infinite periodic flows between two periodic free boundaries, each characterized by a flow-speed condition related to Bernoulli’s law.
36#
發(fā)表于 2025-3-27 21:23:23 | 只看該作者
On some Boundary Value Problems for Incompressible Viscous Flows with Shear Dependent Viscosity,In the sequel we discuss some regularity results . for solutions to the Navier-Stokes equations with shear dependent viscosity, under slip and non-slip boundary conditions, proved in references [3] and [4]. In this talk we show the main lines of the proofs.
37#
發(fā)表于 2025-3-27 22:37:28 | 只看該作者
Hardy Potentials and Quasi-linear Elliptic Problems Having Natural Growth Terms,In this paper we consider nonlinear boundary value problems whose simplest model is the following: . where Ω is a bounded open set in ., . > 2.
38#
發(fā)表于 2025-3-28 04:20:23 | 只看該作者
39#
發(fā)表于 2025-3-28 07:55:55 | 只看該作者
Harnack Inequality for ,-Laplacians on Metric Fractals,By using the approach of the ., we prove a Harnack inequality for non-negative local supersolutions of .-Laplacians — associated to .-Lagrangians — on metric fractals whose homogeneous dimension is less than ..
40#
發(fā)表于 2025-3-28 12:48:36 | 只看該作者
A Solution of the Heat Equation with a Continuum of Decay Rates,In this paper, we prove the existence of a solution of the heat equation on . which decays at different rates along different time sequences going to infinity. In fact, all decay rates . with 0 < . < . are realized by this solution.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 13:42
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
沂南县| 宝丰县| 蒲江县| 万山特区| 杭州市| 雷波县| 永福县| 涡阳县| 满城县| 江山市| 鹤山市| 孙吴县| 内丘县| 包头市| 嵊州市| 江都市| 孝感市| 南部县| 台南县| 团风县| 水城县| 仁寿县| 鄂托克前旗| 绍兴市| 江城| 怀柔区| 明水县| 承德县| 龙州县| 洪洞县| 平江县| 会宁县| 霸州市| 老河口市| 天气| 康马县| 塔河县| 儋州市| 同心县| 临江市| 汝阳县|