找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Elliptic and Parabolic Problems; A Special Tribute to Catherine Bandle,Henri Berestycki,Giorgio Vergara Book 2005 Birkh?user Basel 2005 Bo

[復(fù)制鏈接]
樓主: STH
11#
發(fā)表于 2025-3-23 13:37:09 | 只看該作者
12#
發(fā)表于 2025-3-23 17:18:37 | 只看該作者
Wave Propagation in Discrete Media,ons for front pinning. The nature of these depinning transitions seems to be preserved in higher dimensions. Finally, we discuss the different behavior observed when inertial terms are included in the model.
13#
發(fā)表于 2025-3-23 21:56:12 | 只看該作者
14#
發(fā)表于 2025-3-24 01:23:02 | 只看該作者
15#
發(fā)表于 2025-3-24 02:27:54 | 只看該作者
Max Weber and Plebiscitary Democracy,ltaneously, the phase change in the silicon and a nonlinear non-local boundary condition arising from the Stefan-Boltzmann radiation condition at the enclosure surfaces within the ladle. We also propose a numerical approximation using a finite element method. An iterative algorithm and numerical res
16#
發(fā)表于 2025-3-24 08:14:16 | 只看該作者
Hans-Peter Müller,Steffen Sigmundinitial and Dirichlet boundary conditions.We show that, for suitable initial datum, the energy of the solution decays “in time” exponentially if . = 2 whereas the decay is of a polynomial order if . > 2.
17#
發(fā)表于 2025-3-24 12:21:02 | 只看該作者
18#
發(fā)表于 2025-3-24 18:54:18 | 只看該作者
The Scientist in Search of Salvationficients. It applies to the smooth fit principle in numerical analysis and in financial mathematics. It relies on various tools for the study of free boundary problems: blow-up method, monotonicity formulae, Liouville’s results.
19#
發(fā)表于 2025-3-24 21:21:13 | 只看該作者
Museum ModernerKunst Stiftung Ludwig Wienmous differential equation that gives a special class of solutions called similarity solutions. Two cases are under consideration: in the first one we prescribe the temperature on the plate and in the second one we prescribe the heat flux on it. We will also see that the same equation appears in oth
20#
發(fā)表于 2025-3-24 23:53:26 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 13:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
定襄县| 安龙县| 蒙自县| 东莞市| 中阳县| 邹城市| 鄂伦春自治旗| 正蓝旗| 舟山市| 福安市| 平湖市| 全椒县| 合肥市| 闻喜县| 宽甸| 高碑店市| 建昌县| 咸阳市| 巩留县| 德保县| 松江区| 建湖县| 同心县| 金寨县| 炎陵县| 娱乐| 敦煌市| 富顺县| 凌海市| 自治县| 宁波市| 东平县| 江油市| 山东| 如皋市| 界首市| 襄城县| 荣昌县| 石棉县| 治县。| 北海市|