找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Elliptic and Parabolic Problems; A Special Tribute to Catherine Bandle,Henri Berestycki,Giorgio Vergara Book 2005 Birkh?user Basel 2005 Bo

[復(fù)制鏈接]
查看: 43110|回復(fù): 62
樓主
發(fā)表于 2025-3-21 18:24:54 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Elliptic and Parabolic Problems
副標(biāo)題A Special Tribute to
編輯Catherine Bandle,Henri Berestycki,Giorgio Vergara
視頻videohttp://file.papertrans.cn/308/307810/307810.mp4
概述Presents new developments in the theory of partial differential equations with emphasis on elliptic and parabolic problems.Contributions stem from the same school which has been very active in the las
叢書名稱Progress in Nonlinear Differential Equations and Their Applications
圖書封面Titlebook: Elliptic and Parabolic Problems; A Special Tribute to Catherine Bandle,Henri Berestycki,Giorgio Vergara  Book 2005 Birkh?user Basel 2005 Bo
出版日期Book 2005
關(guān)鍵詞Boundary value problem; Boundary value problems; Nonlinear equations; Partial differential equations; ma
版次1
doihttps://doi.org/10.1007/3-7643-7384-9
isbn_ebook978-3-7643-7384-9Series ISSN 1421-1750 Series E-ISSN 2374-0280
issn_series 1421-1750
copyrightBirkh?user Basel 2005
The information of publication is updating

書目名稱Elliptic and Parabolic Problems影響因子(影響力)




書目名稱Elliptic and Parabolic Problems影響因子(影響力)學(xué)科排名




書目名稱Elliptic and Parabolic Problems網(wǎng)絡(luò)公開度




書目名稱Elliptic and Parabolic Problems網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Elliptic and Parabolic Problems被引頻次




書目名稱Elliptic and Parabolic Problems被引頻次學(xué)科排名




書目名稱Elliptic and Parabolic Problems年度引用




書目名稱Elliptic and Parabolic Problems年度引用學(xué)科排名




書目名稱Elliptic and Parabolic Problems讀者反饋




書目名稱Elliptic and Parabolic Problems讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:08:34 | 只看該作者
A Decay Result for a Quasilinear Parabolic System,initial and Dirichlet boundary conditions.We show that, for suitable initial datum, the energy of the solution decays “in time” exponentially if . = 2 whereas the decay is of a polynomial order if . > 2.
板凳
發(fā)表于 2025-3-22 01:45:29 | 只看該作者
地板
發(fā)表于 2025-3-22 05:29:16 | 只看該作者
On the One-dimensional Parabolic Obstacle Problem with Variable Coefficients,ficients. It applies to the smooth fit principle in numerical analysis and in financial mathematics. It relies on various tools for the study of free boundary problems: blow-up method, monotonicity formulae, Liouville’s results.
5#
發(fā)表于 2025-3-22 11:22:51 | 只看該作者
6#
發(fā)表于 2025-3-22 14:07:23 | 只看該作者
Rellich Relations for Mixed Boundary Elliptic Problems,is connected. Following previous works concerning the Laplace equation, we here give Rellich relations involving singularities for the Lamé system..These relations are useful in the problem of boundary stabilization of the waves equation and the elastodynamic system, respectively, when using the mul
7#
發(fā)表于 2025-3-22 20:49:40 | 只看該作者
Lyapunov-type Inequalities and Applications to PDE, careful analysis which involves Lyapunov-type inequalities with the .— norms of the coefficient function. After this end, combining these results with Schauder fixed point theorem, we obtain some new results about the existence and uniqueness of solutions for resonant nonlinear problems.
8#
發(fā)表于 2025-3-22 21:28:00 | 只看該作者
9#
發(fā)表于 2025-3-23 01:37:46 | 只看該作者
Geodesic Computations for Fast and Accurate Surface Remeshing and Parameterization,ework for 3D geometry modeling and processing that uses only fast geodesic computations. These techniques are gathered and extended from classical areas such as image processing or statistical perceptual learning. Using the . algorithm, we are able to recast these powerful tools in the language of m
10#
發(fā)表于 2025-3-23 06:23:42 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 08:38
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
华亭县| 固阳县| 汉源县| 洛阳市| 金坛市| 金门县| 阳东县| 铜鼓县| 象州县| 米林县| 英超| 额尔古纳市| 南安市| 连州市| 通榆县| 镇安县| 上蔡县| 界首市| 崇礼县| 揭阳市| 海淀区| 祁连县| 平远县| 扎鲁特旗| 都安| 汉寿县| 太白县| 万年县| 横山县| 湖州市| 澄城县| 霸州市| 五莲县| 错那县| 宁城县| 襄汾县| 涿鹿县| 化德县| 北宁市| 杭锦后旗| 应用必备|