找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Elliptic Integrals and Elliptic Functions; Takashi Takebe Textbook 2023 The Editor(s) (if applicable) and The Author(s), under exclusive l

[復(fù)制鏈接]
樓主: purulent
31#
發(fā)表于 2025-3-27 00:46:08 | 只看該作者
Applications of Jacobi’s Elliptic FunctionsIn the previous chapter we defined Jacobi’s elliptic function sn as the inverse function of the incomplete elliptic integral of the first kind, introduced cn and dn and studied their properties. These Jacobi’s elliptic functions appear in various problems, from which we pick up two applications to physics in this chapter.
32#
發(fā)表于 2025-3-27 02:24:56 | 只看該作者
Elliptic CurvesExercise 7.2 Prove the above proposition. (Hint: (i) follows from the fact that 𝜑(𝑧) does not have multiple roots. For (ii) and (iii) use local coordinates 𝑧 (around a point which is not a branch point) and 𝑤 (around branch points), after checking that they really are local coordinates.)
33#
發(fā)表于 2025-3-27 09:22:21 | 只看該作者
Complex Elliptic IntegralsThe expression (8.4) means that ‘in the homology group any closed curve is equivalent to a curve which goes around 𝐴 several times and then goes around 𝐵 several times’. This can be explained in the following way.
34#
發(fā)表于 2025-3-27 10:03:58 | 只看該作者
35#
發(fā)表于 2025-3-27 16:50:25 | 只看該作者
36#
發(fā)表于 2025-3-27 18:24:40 | 只看該作者
The Weierstrass ?-FunctionIn the previous chapter we defined elliptic functions as meromorphic functions on an elliptic curve = doubly periodic meromorphic functions on . and studied their properties. In particular, we gave several examples of elliptic functions which are obtained immediately from the definitions.
37#
發(fā)表于 2025-3-27 23:45:22 | 只看該作者
38#
發(fā)表于 2025-3-28 04:46:24 | 只看該作者
Characterisation by Addition FormulaeIn the previous chapter we proved that rational functions, rational functions of an exponential function and elliptic functions have addition theorems (algebraic addition formulae). Are there other functions which have algebraic addition formulae? The next Weierstrass–Phragmén theorem1 answers this question.
39#
發(fā)表于 2025-3-28 10:17:16 | 只看該作者
https://doi.org/10.1007/978-3-031-30265-7elliptic functions; elliptic integrals; complex analysis; application to physics; Riemann surfaces; ellip
40#
發(fā)表于 2025-3-28 14:04:00 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 01:35
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
屯留县| 呼和浩特市| 镇安县| 东至县| 亚东县| 怀柔区| 乌恰县| 望城县| 南汇区| 海晏县| 万盛区| 沭阳县| 志丹县| 祁阳县| 澄江县| 大冶市| 乐东| 泗水县| 左权县| 炉霍县| 灌云县| 特克斯县| 兖州市| 九台市| 富民县| 临汾市| 衡山县| 千阳县| 青州市| 东安县| 武邑县| 长白| 海安县| 安顺市| 南丰县| 陇西县| 东阳市| 新兴县| 额尔古纳市| 蓬溪县| 康乐县|