找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Elliptic Integrals and Elliptic Functions; Takashi Takebe Textbook 2023 The Editor(s) (if applicable) and The Author(s), under exclusive l

[復(fù)制鏈接]
樓主: purulent
31#
發(fā)表于 2025-3-27 00:46:08 | 只看該作者
Applications of Jacobi’s Elliptic FunctionsIn the previous chapter we defined Jacobi’s elliptic function sn as the inverse function of the incomplete elliptic integral of the first kind, introduced cn and dn and studied their properties. These Jacobi’s elliptic functions appear in various problems, from which we pick up two applications to physics in this chapter.
32#
發(fā)表于 2025-3-27 02:24:56 | 只看該作者
Elliptic CurvesExercise 7.2 Prove the above proposition. (Hint: (i) follows from the fact that 𝜑(𝑧) does not have multiple roots. For (ii) and (iii) use local coordinates 𝑧 (around a point which is not a branch point) and 𝑤 (around branch points), after checking that they really are local coordinates.)
33#
發(fā)表于 2025-3-27 09:22:21 | 只看該作者
Complex Elliptic IntegralsThe expression (8.4) means that ‘in the homology group any closed curve is equivalent to a curve which goes around 𝐴 several times and then goes around 𝐵 several times’. This can be explained in the following way.
34#
發(fā)表于 2025-3-27 10:03:58 | 只看該作者
35#
發(fā)表于 2025-3-27 16:50:25 | 只看該作者
36#
發(fā)表于 2025-3-27 18:24:40 | 只看該作者
The Weierstrass ?-FunctionIn the previous chapter we defined elliptic functions as meromorphic functions on an elliptic curve = doubly periodic meromorphic functions on . and studied their properties. In particular, we gave several examples of elliptic functions which are obtained immediately from the definitions.
37#
發(fā)表于 2025-3-27 23:45:22 | 只看該作者
38#
發(fā)表于 2025-3-28 04:46:24 | 只看該作者
Characterisation by Addition FormulaeIn the previous chapter we proved that rational functions, rational functions of an exponential function and elliptic functions have addition theorems (algebraic addition formulae). Are there other functions which have algebraic addition formulae? The next Weierstrass–Phragmén theorem1 answers this question.
39#
發(fā)表于 2025-3-28 10:17:16 | 只看該作者
https://doi.org/10.1007/978-3-031-30265-7elliptic functions; elliptic integrals; complex analysis; application to physics; Riemann surfaces; ellip
40#
發(fā)表于 2025-3-28 14:04:00 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 01:35
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
陇南市| 遂宁市| 万山特区| 河北区| 新建县| 柘荣县| 马山县| 城固县| 延边| 泰和县| 调兵山市| 喀什市| 林州市| 泸西县| 晋江市| 四会市| 达尔| 淮安市| 益阳市| 垫江县| 江安县| 武威市| 深州市| 彰武县| 绥棱县| 二连浩特市| 崇礼县| 凤山市| 凉山| 揭西县| 双辽市| 荣昌县| 宁城县| 甘德县| 福泉市| 同心县| 松江区| 梁平县| 顺义区| 云梦县| 保定市|