找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Elliptic Integrals and Elliptic Functions; Takashi Takebe Textbook 2023 The Editor(s) (if applicable) and The Author(s), under exclusive l

[復(fù)制鏈接]
樓主: purulent
11#
發(fā)表于 2025-3-23 10:46:50 | 只看該作者
Theta Functions imposing both conditions, ‘doubly periodic’ and ‘holomorphic’, is too restrictive. When the condition ‘holomorphic’ is replaced by ‘meromorphic’, the fruitful theory of elliptic functions is developed, as we saw. In this chapter we loosen the condition ‘doubly periodic’.
12#
發(fā)表于 2025-3-23 14:29:48 | 只看該作者
13#
發(fā)表于 2025-3-23 21:53:11 | 只看該作者
14#
發(fā)表于 2025-3-23 22:53:39 | 只看該作者
15#
發(fā)表于 2025-3-24 06:05:31 | 只看該作者
https://doi.org/10.1007/978-3-8274-2853-0It is natural to call the former an . integral, but why call the latter ‘elliptic’, even though the curve is not an ellipse? In fact, today the word ‘elliptic integral’ is a general term used in the following sense.
16#
發(fā)表于 2025-3-24 08:10:14 | 只看該作者
Ein Spielzeug mit GruppenstrukturIn this chapter, we are going to see how elliptic integrals are applied in mathematics and physics. Good mathematical objects appear in many situations.
17#
發(fā)表于 2025-3-24 12:38:53 | 只看該作者
18#
發(fā)表于 2025-3-24 15:35:59 | 只看該作者
Brennstoffe und ihre technische Verwendung,In the previous chapter we defined Jacobi’s elliptic function sn as the inverse function of the incomplete elliptic integral of the first kind, introduced cn and dn and studied their properties. These Jacobi’s elliptic functions appear in various problems, from which we pick up two applications to physics in this chapter.
19#
發(fā)表于 2025-3-24 19:23:00 | 只看該作者
20#
發(fā)表于 2025-3-25 02:20:44 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 18:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
河西区| 钦州市| 睢宁县| 昌平区| 玉山县| 濉溪县| 高碑店市| 新和县| 温宿县| 长兴县| 眉山市| 惠安县| 边坝县| 临泉县| 安多县| 开化县| 穆棱市| 淮南市| 六安市| 当涂县| 江山市| 巩义市| 确山县| 喜德县| 肃南| 平湖市| 衡东县| 徐闻县| 上思县| 沾化县| 屯昌县| 陆丰市| 乐陵市| 岳阳县| 安国市| 泸州市| 定南县| 蒲城县| 沙洋县| 山阴县| 平利县|