找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Elliptic Integrals and Elliptic Functions; Takashi Takebe Textbook 2023 The Editor(s) (if applicable) and The Author(s), under exclusive l

[復(fù)制鏈接]
樓主: purulent
21#
發(fā)表于 2025-3-25 04:47:26 | 只看該作者
,über die Weierstra?sche ? — Funktion,How many kinds of domains are there in a plane? Here by the word ‘domain’ we mean a connected open set (or, equivalently, an arcwise-connected open set).
22#
發(fā)表于 2025-3-25 10:39:53 | 只看該作者
23#
發(fā)表于 2025-3-25 15:23:29 | 只看該作者
24#
發(fā)表于 2025-3-25 17:25:52 | 只看該作者
25#
發(fā)表于 2025-3-25 21:34:42 | 只看該作者
,Analysis: Ma? und Integration,In the previous chapter we proved that rational functions, rational functions of an exponential function and elliptic functions have addition theorems (algebraic addition formulae). Are there other functions which have algebraic addition formulae? The next Weierstrass–Phragmén theorem1 answers this question.
26#
發(fā)表于 2025-3-26 03:33:50 | 只看該作者
Introduction,In this chapter, apart from establishing rigorous definitions and logic, we will survey the various themes in the main part of the book to get an overview of the theory.We also pick up several topics which we shall not deal with later, in order to show the breadth and depth of the theory of elliptic functions.
27#
發(fā)表于 2025-3-26 04:45:40 | 只看該作者
The Arc Length of CurvesAs a matter of fact, this is nothing more than a paraphrase of the definition of 𝜋: ‘The number 𝜋 is the ratio of a circle’s circumference to its diameter’. However, if you pursue logical rigour, there are many gaps to be filled.
28#
發(fā)表于 2025-3-26 09:13:24 | 只看該作者
Classification of Elliptic IntegralsIt is natural to call the former an . integral, but why call the latter ‘elliptic’, even though the curve is not an ellipse? In fact, today the word ‘elliptic integral’ is a general term used in the following sense.
29#
發(fā)表于 2025-3-26 16:38:33 | 只看該作者
30#
發(fā)表于 2025-3-26 18:45:33 | 只看該作者
Jacobi’s Elliptic Functions on In this chapter we introduce elliptic functions as inverse functions of elliptic integrals..We use several convergence theorems in real analysis, which we cite in Appendix A.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 03:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
仪陇县| 东乌| 万州区| 塘沽区| 密云县| 靖边县| 清镇市| 南康市| 台安县| 久治县| 新丰县| 南乐县| 南投市| 博湖县| 铅山县| 高台县| 定南县| 轮台县| 靖安县| 定西市| 长泰县| 久治县| 宁河县| 荔浦县| 河津市| 楚雄市| 南雄市| 延吉市| 体育| 宁阳县| 景洪市| 诸暨市| 留坝县| 深圳市| 三江| 大城县| 宕昌县| 朝阳区| 鹤岗市| 横峰县| 金乡县|