找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Elliptic Functions; Serge Lang Textbook 1987Latest edition Springer-Verlag New York Inc. 1987 Modular form.complex analysis.elliptic funct

[復(fù)制鏈接]
查看: 24523|回復(fù): 53
樓主
發(fā)表于 2025-3-21 18:15:10 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Elliptic Functions
編輯Serge Lang
視頻videohttp://file.papertrans.cn/308/307791/307791.mp4
叢書名稱Graduate Texts in Mathematics
圖書封面Titlebook: Elliptic Functions;  Serge Lang Textbook 1987Latest edition Springer-Verlag New York Inc. 1987 Modular form.complex analysis.elliptic funct
描述Elliptic functions parametrize elliptic curves, and the intermingling of the analytic and algebraic-arithmetic theory has been at the center of mathematics since the early part of the nineteenth century. The book is divided into four parts. In the first, Lang presents the general analytic theory starting from scratch. Most of this can be read by a student with a basic knowledge of complex analysis. The next part treats complex multiplication, including a discussion of Deuring‘s theory of l-adic and p-adic representations, and elliptic curves with singular invariants. Part three covers curves with non-integral invariants, and applies the Tate parametrization to give Serre‘s results on division points. The last part covers theta functions and the Kronecker Limit Formula. Also included is an appendix by Tate on algebraic formulas in arbitrary charactistic.
出版日期Textbook 1987Latest edition
關(guān)鍵詞Modular form; complex analysis; elliptic function; integral; operator; theta function
版次2
doihttps://doi.org/10.1007/978-1-4612-4752-4
isbn_softcover978-1-4612-9142-8
isbn_ebook978-1-4612-4752-4Series ISSN 0072-5285 Series E-ISSN 2197-5612
issn_series 0072-5285
copyrightSpringer-Verlag New York Inc. 1987
The information of publication is updating

書目名稱Elliptic Functions影響因子(影響力)




書目名稱Elliptic Functions影響因子(影響力)學(xué)科排名




書目名稱Elliptic Functions網(wǎng)絡(luò)公開(kāi)度




書目名稱Elliptic Functions網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書目名稱Elliptic Functions被引頻次




書目名稱Elliptic Functions被引頻次學(xué)科排名




書目名稱Elliptic Functions年度引用




書目名稱Elliptic Functions年度引用學(xué)科排名




書目名稱Elliptic Functions讀者反饋




書目名稱Elliptic Functions讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:15:47 | 只看該作者
Reduction of Elliptic Curves We shall not give any proofs. These can be given ad hoc, as Deuring did, for the elliptic curves, or one can develop a general reduction theory, as in Shimura [39]. No matter what, it is a pain to lay these foundations, but the results can be stated simply. Although classically one reduces over a d
板凳
發(fā)表于 2025-3-22 04:06:07 | 只看該作者
Ihara’s Theoryoup [22], pointing out that it has the same. part as in characteristic zero, and that the part acting on the roots of unity is just that generated by the Frobenius element, i.e. those matrices having determinant a power of .. Ihara had the idea of lifting back singular values . of . in the algebraic
地板
發(fā)表于 2025-3-22 06:22:21 | 只看該作者
5#
發(fā)表于 2025-3-22 10:17:55 | 只看該作者
Korrektur von ProgrammieraufgabenLet . be an elliptic curve defined over a field .. For each positive integer . we denote by . the kernel of the map . i.e. it is the subgroup of points of order ..
6#
發(fā)表于 2025-3-22 13:19:52 | 只看該作者
7#
發(fā)表于 2025-3-22 20:17:26 | 只看該作者
8#
發(fā)表于 2025-3-23 01:16:35 | 只看該作者
9#
發(fā)表于 2025-3-23 04:01:33 | 只看該作者
Mathematik und Gott und die WeltLet Γ = .(.) again. We define Γ. (or Γ(.)) for each positive integer . to be the subgroup of Γ consisting of those matrices satisfying the condition .in other words..
10#
發(fā)表于 2025-3-23 07:29:40 | 只看該作者
Erzieherische LeitvorstellungenIf ., . are positive integers, and .|., then we have a canonical homomorphism .and we can take the projective limit.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 14:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
浑源县| 克什克腾旗| 大丰市| 西城区| 大港区| 石门县| 高安市| 乡城县| 临安市| 宁明县| 喀什市| 泸州市| 凌云县| 屏山县| 崇明县| 中西区| 嵩明县| 石泉县| 尖扎县| 张家川| 古浪县| 拉萨市| 略阳县| 筠连县| 桦南县| 叶城县| 泗水县| 凯里市| 花垣县| 赞皇县| 彝良县| 大埔区| 巴林右旗| 岚皋县| 新丰县| 江津市| 新兴县| 上饶县| 邻水| 巢湖市| 平塘县|