找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Elliptic Boundary Problems for Dirac Operators; Bernhelm Boo?-Bavnbek,Krzysztof P. Wojciechowski Book 1993 Springer Science+Business Media

[復(fù)制鏈接]
樓主: DIGN
31#
發(fā)表于 2025-3-26 21:45:31 | 只看該作者
Spectral Projections of Dirac OperatorsWe account for the construction and the basic properties of the spectral projections associated with the tangential part of a Dirac operator.
32#
發(fā)表于 2025-3-27 01:42:45 | 只看該作者
Pseudo-Differential GrassmanniansThe homotopy groups of the space of pseudo-differential projections with given principal symbol are computed. Criteria are given for two projections belonging to the same connected component.
33#
發(fā)表于 2025-3-27 07:10:51 | 只看該作者
34#
發(fā)表于 2025-3-27 13:28:21 | 只看該作者
35#
發(fā)表于 2025-3-27 14:23:53 | 只看該作者
36#
發(fā)表于 2025-3-27 18:40:14 | 只看該作者
Probability Logic as a Fuzzy Logic or without boundary), we obtain the Clifford bundle .?(.) ? .?(., .). We show that there exists a connection . for any bundle . of complex left modules over .?(.) which is compatible with Clifford multiplication and extends the Riemannian connection on . to S.
37#
發(fā)表于 2025-3-27 22:16:30 | 只看該作者
https://doi.org/10.1007/978-1-4612-3028-1ng even to odd spinors which is exactly the Cauchy-Riemann operator; the Dirac operator on .-valued functions; and the quaternion analogue for the Cauchy-Riemann operator and its expression by Pauli matrices.
38#
發(fā)表于 2025-3-28 05:01:17 | 只看該作者
39#
發(fā)表于 2025-3-28 07:42:31 | 只看該作者
Clifford Bundles and Compatible Connections or without boundary), we obtain the Clifford bundle .?(.) ? .?(., .). We show that there exists a connection . for any bundle . of complex left modules over .?(.) which is compatible with Clifford multiplication and extends the Riemannian connection on . to S.
40#
發(fā)表于 2025-3-28 11:46:31 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-25 15:36
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
鹤山市| 北碚区| 潍坊市| 宁夏| 嘉祥县| 大名县| 康马县| 庐江县| 灯塔市| 罗甸县| 嵊州市| 太谷县| 泰和县| 南城县| 营山县| 上思县| 安塞县| 西畴县| 南昌县| 镇康县| 柏乡县| 安国市| 五峰| 札达县| 雷州市| 巨野县| 沂水县| 仪征市| 永登县| 婺源县| 万宁市| 吕梁市| 澄江县| 怀安县| 独山县| 黄龙县| 昌江| 靖宇县| 射洪县| 东乡族自治县| 依安县|