找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Elliptic Boundary Problems for Dirac Operators; Bernhelm Boo?-Bavnbek,Krzysztof P. Wojciechowski Book 1993 Springer Science+Business Media

[復(fù)制鏈接]
樓主: DIGN
31#
發(fā)表于 2025-3-26 21:45:31 | 只看該作者
Spectral Projections of Dirac OperatorsWe account for the construction and the basic properties of the spectral projections associated with the tangential part of a Dirac operator.
32#
發(fā)表于 2025-3-27 01:42:45 | 只看該作者
Pseudo-Differential GrassmanniansThe homotopy groups of the space of pseudo-differential projections with given principal symbol are computed. Criteria are given for two projections belonging to the same connected component.
33#
發(fā)表于 2025-3-27 07:10:51 | 只看該作者
34#
發(fā)表于 2025-3-27 13:28:21 | 只看該作者
35#
發(fā)表于 2025-3-27 14:23:53 | 只看該作者
36#
發(fā)表于 2025-3-27 18:40:14 | 只看該作者
Probability Logic as a Fuzzy Logic or without boundary), we obtain the Clifford bundle .?(.) ? .?(., .). We show that there exists a connection . for any bundle . of complex left modules over .?(.) which is compatible with Clifford multiplication and extends the Riemannian connection on . to S.
37#
發(fā)表于 2025-3-27 22:16:30 | 只看該作者
https://doi.org/10.1007/978-1-4612-3028-1ng even to odd spinors which is exactly the Cauchy-Riemann operator; the Dirac operator on .-valued functions; and the quaternion analogue for the Cauchy-Riemann operator and its expression by Pauli matrices.
38#
發(fā)表于 2025-3-28 05:01:17 | 只看該作者
39#
發(fā)表于 2025-3-28 07:42:31 | 只看該作者
Clifford Bundles and Compatible Connections or without boundary), we obtain the Clifford bundle .?(.) ? .?(., .). We show that there exists a connection . for any bundle . of complex left modules over .?(.) which is compatible with Clifford multiplication and extends the Riemannian connection on . to S.
40#
發(fā)表于 2025-3-28 11:46:31 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-25 15:36
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
分宜县| 观塘区| 罗源县| 特克斯县| 云和县| 漠河县| 淅川县| 沅陵县| 张家港市| 鄂温| 勐海县| 沿河| 中牟县| 斗六市| 射阳县| 增城市| 柳林县| 秀山| 乡宁县| 衡东县| 曲水县| 东乌珠穆沁旗| 石河子市| 铅山县| 田东县| 财经| 昔阳县| 怀远县| 昌邑市| 肇庆市| 资中县| 柳江县| 隆尧县| 陈巴尔虎旗| 桂林市| 江阴市| 双城市| 五河县| 三都| 秦安县| 治多县|