找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Elliptic Boundary Problems for Dirac Operators; Bernhelm Boo?-Bavnbek,Krzysztof P. Wojciechowski Book 1993 Springer Science+Business Media

[復(fù)制鏈接]
樓主: DIGN
21#
發(fā)表于 2025-3-25 05:32:15 | 只看該作者
22#
發(fā)表于 2025-3-25 09:20:16 | 只看該作者
Dirac Laplacian and Connection LaplacianWe discuss the general Bochner identity which gives an expression of the .. in terms of the .*. and certain bundle endomorphisms
23#
發(fā)表于 2025-3-25 13:42:25 | 只看該作者
The Classical Dirac (Atiyah-Singer) Operators on Spin ManifoldsWe consider a spin manifold with a spin structure on its tangent bundle, and a spinor bundle endowed with its canonical connection. We formulate the Lichnerowicz vanishing theorem.
24#
發(fā)表于 2025-3-25 19:39:21 | 只看該作者
Dirac Operators and ChiralityWe emphasize the decomposition of a .?(.)-bundle . = .. ⊕ .. and the related splitting of Dirac operators. It is illuminating to treat the signature operator and other geometrically defined operators in this context.
25#
發(fā)表于 2025-3-25 21:59:53 | 只看該作者
Unique Continuation Property for Dirac OperatorsWe give a direct proof of the unique continuation property of a Dirac operator by exploiting its simple product decomposition.
26#
發(fā)表于 2025-3-26 00:36:01 | 只看該作者
Invertible DoublesWe discuss an important . result for Dirac operators on manifolds with boundary which provides an invertible differential operator on the closed double.
27#
發(fā)表于 2025-3-26 05:47:54 | 只看該作者
28#
發(fā)表于 2025-3-26 10:27:25 | 只看該作者
Sobolev Spaces on Manifolds with BoundaryWe investigate the continuity properties of taking traces in Sobolev spaces over manifolds with boundary.
29#
發(fā)表于 2025-3-26 14:51:30 | 只看該作者
30#
發(fā)表于 2025-3-26 18:15:21 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-25 15:36
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
松江区| 遵义县| 萨迦县| 台南县| 大安市| 民县| 廉江市| 利辛县| 徐水县| 江北区| 临汾市| 石阡县| 侯马市| 田阳县| 淮北市| 屯昌县| 关岭| 葫芦岛市| 施秉县| 高安市| 云南省| 克山县| 岳池县| 阿巴嘎旗| 酒泉市| 平泉县| 三门县| 宜阳县| 陇西县| 九龙城区| 三亚市| 田阳县| 大关县| 屯昌县| 察哈| 故城县| 株洲县| 加查县| 宁河县| 香港 | 阜南县|