找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Elements of Applied Bifurcation Theory; Yuri A. Kuznetsov Book 20043rd edition Springer Science+Business Media New York 2004 Mathematica.a

[復(fù)制鏈接]
樓主: 精明
41#
發(fā)表于 2025-3-28 15:37:56 | 只看該作者
42#
發(fā)表于 2025-3-28 22:01:43 | 只看該作者
Other One-Parameter Bifurcations in Continuous-Time Dynamical Systems,list of all generic one-parameter bifurcations is unknown. In this chapter we study several unrelated bifurcations that occur in one-parameter continuous-time dynamical systems.where . is a smooth function of (., .). We start by considering global bifurcations of orbits that are homoclinic to nonhyp
43#
發(fā)表于 2025-3-28 23:49:18 | 只看該作者
Two-Parameter Bifurcations of Equilibria in Continuous-Time Dynamical Systems,ch bifurcations. Then, we derive a . for each bifurcation in the minimal possible phase dimension and specify relevant genericity conditions. Next, we truncate higher-order terms and present the bifurcation diagrams of the resulting system. The analysis is completed by a discussion of the effect of
44#
發(fā)表于 2025-3-29 03:30:07 | 只看該作者
Two-Parameter Bifurcations of Fixed Points in Discrete-Time Dynamical Systems,r the final two bifurcations in the previous chapter, the description of the majority of these bifurcations is incomplete in principle. For all but two cases, only . normal forms can be constructed. Some of these normal forms will be presented in terms of associated planar continuous-time systems wh
45#
發(fā)表于 2025-3-29 08:17:42 | 只看該作者
Numerical Analysis of Bifurcations, routines like those for solving linear systems, finding eigenvectors and eigenvalues, and performing numerical integration of ODEs are known to the reader. Instead we focus on algorithms that are more specific to bifurcation analysis, specifically those for the location of equilibria (fixed points)
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-19 19:35
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
博客| 黔西| 府谷县| 永城市| 综艺| 黎城县| 张家川| 海兴县| 连云港市| 永城市| 和龙市| 永修县| 来凤县| 邹平县| 大洼县| 麟游县| 车险| 六枝特区| 岑巩县| 景德镇市| 乐至县| 麻江县| 长武县| 揭阳市| 邢台市| 集贤县| 瓮安县| 台中县| 铜山县| 通辽市| 海原县| 临泉县| 神木县| 滕州市| 佛教| 确山县| 天水市| 凤阳县| 体育| 平阴县| 胶南市|