找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Elements of Applied Bifurcation Theory; Yuri A. Kuznetsov Book 20043rd edition Springer Science+Business Media New York 2004 Mathematica.a

[復(fù)制鏈接]
樓主: 精明
11#
發(fā)表于 2025-3-23 11:03:47 | 只看該作者
https://doi.org/10.1007/978-981-19-1794-3 routines like those for solving linear systems, finding eigenvectors and eigenvalues, and performing numerical integration of ODEs are known to the reader. Instead we focus on algorithms that are more specific to bifurcation analysis, specifically those for the location of equilibria (fixed points)
12#
發(fā)表于 2025-3-23 14:48:01 | 只看該作者
13#
發(fā)表于 2025-3-23 20:48:01 | 只看該作者
14#
發(fā)表于 2025-3-24 00:27:02 | 只看該作者
15#
發(fā)表于 2025-3-24 05:25:19 | 只看該作者
16#
發(fā)表于 2025-3-24 10:13:57 | 只看該作者
17#
發(fā)表于 2025-3-24 14:09:36 | 只看該作者
Bifurcations of Orbits Homoclinic and Heteroclinic to Hyperbolic Equilibria, dynamical systems. First we consider in detail two- and three-dimensional cases where geometrical intuition can be fully exploited. Then we show how to reduce generic .-dimensional cases to the considered ones plus a four-dimensional case treated in Appendix A.
18#
發(fā)表于 2025-3-24 18:55:21 | 只看該作者
19#
發(fā)表于 2025-3-24 20:09:24 | 只看該作者
Other One-Parameter Bifurcations in Continuous-Time Dynamical Systems,urcations in symmetric systems, which are those systems that are invariant with respect to the representation of a certain symmetry group. After giving some general results on bifurcations in such systems, we restrict our attention to bifurcations of equilibria and cycles in the presence of the simp
20#
發(fā)表于 2025-3-24 23:32:57 | 只看該作者
Numerical Analysis of Bifurcations,. Appendix B gives some background information on the bialternate matrix product used to detect Hopf and Neimark-Sacker bifurcations. Appendix C presents numerical methods for detection of higher-order homoclinic bifurcations. The bibliographical notes in Appendix D include references to standard no
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-19 23:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
吉木萨尔县| 广水市| 金溪县| 电白县| 曲水县| 奎屯市| 西畴县| 桂东县| 鸡西市| 观塘区| 三门峡市| 漯河市| 凤台县| 大庆市| 简阳市| 嘉禾县| 平山县| 科尔| 泰安市| 收藏| 长沙县| 福贡县| 泰来县| 静宁县| 黄平县| 阿城市| 剑河县| 观塘区| 秦皇岛市| 天峨县| 格尔木市| 遵义市| 托克逊县| 新宁县| 城步| 巢湖市| 临颍县| 修水县| 大悟县| 龙南县| 通榆县|