找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Elements of Applied Bifurcation Theory; Yuri A. Kuznetsov Book 2023Latest edition The Editor(s) (if applicable) and The Author(s), under e

[復(fù)制鏈接]
樓主: grateful
21#
發(fā)表于 2025-3-25 05:57:59 | 只看該作者
22#
發(fā)表于 2025-3-25 08:02:57 | 只看該作者
23#
發(fā)表于 2025-3-25 13:53:03 | 只看該作者
,Numerical Analysis ?of Bifurcations,l routines like those for solving linear systems, finding eigenvectors and eigenvalues, and performing numerical integration of ODEs are known to the reader. Instead, we focus on algorithms that are more specific to bifurcation analysis, specifically those for the location?of equilibria (fixed point
24#
發(fā)表于 2025-3-25 17:50:56 | 只看該作者
,Kontrast und Signal-zu-Rausch-Verh?ltnis,This chapter introduces some basic terminology. First, we define a . and give several examples, including symbolic dynamics. Then we introduce the notions of ., and their .. As we shall see while analyzing the ., invariant sets can have very complex structures.
25#
發(fā)表于 2025-3-25 22:22:26 | 只看該作者
26#
發(fā)表于 2025-3-26 04:03:16 | 只看該作者
https://doi.org/10.1007/978-3-642-66120-4The list of possible bifurcations in multidimensional systems is not exhausted by those studied in the previous chapters. Actually, even the complete list of all generic one-parameter bifurcations is unknown.
27#
發(fā)表于 2025-3-26 06:23:20 | 只看該作者
28#
發(fā)表于 2025-3-26 11:41:49 | 只看該作者
One-Parameter Bifurcations of Fixed Points in Discrete-Time Dynamical Systems,In this chapter, which is organized very much like Chap. 3, we present bifurcation conditions defining the simplest bifurcations of fixed points in .-dimensional discrete-time dynamical systems: the fold, the flip, and the Neimark-Sacker bifurcations.
29#
發(fā)表于 2025-3-26 15:09:34 | 只看該作者
30#
發(fā)表于 2025-3-26 20:09:42 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 18:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
塘沽区| 百色市| 微博| 肇源县| 淮安市| 武冈市| 滁州市| 新民市| 井陉县| 平遥县| 藁城市| 左云县| 靖江市| 巴林左旗| 永济市| 蒲江县| 普安县| 繁昌县| 新源县| 芒康县| 天台县| 稷山县| 郁南县| 延寿县| 金川县| 翼城县| 池州市| 寿光市| 白水县| 涞水县| 台州市| 邯郸市| 亳州市| 金溪县| 丽江市| 甘孜| 齐齐哈尔市| 聂荣县| 财经| 神木县| 卓尼县|