找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Elements of Applied Bifurcation Theory; Yuri A. Kuznetsov Book 2023Latest edition The Editor(s) (if applicable) and The Author(s), under e

[復(fù)制鏈接]
樓主: grateful
21#
發(fā)表于 2025-3-25 05:57:59 | 只看該作者
22#
發(fā)表于 2025-3-25 08:02:57 | 只看該作者
23#
發(fā)表于 2025-3-25 13:53:03 | 只看該作者
,Numerical Analysis ?of Bifurcations,l routines like those for solving linear systems, finding eigenvectors and eigenvalues, and performing numerical integration of ODEs are known to the reader. Instead, we focus on algorithms that are more specific to bifurcation analysis, specifically those for the location?of equilibria (fixed point
24#
發(fā)表于 2025-3-25 17:50:56 | 只看該作者
,Kontrast und Signal-zu-Rausch-Verh?ltnis,This chapter introduces some basic terminology. First, we define a . and give several examples, including symbolic dynamics. Then we introduce the notions of ., and their .. As we shall see while analyzing the ., invariant sets can have very complex structures.
25#
發(fā)表于 2025-3-25 22:22:26 | 只看該作者
26#
發(fā)表于 2025-3-26 04:03:16 | 只看該作者
https://doi.org/10.1007/978-3-642-66120-4The list of possible bifurcations in multidimensional systems is not exhausted by those studied in the previous chapters. Actually, even the complete list of all generic one-parameter bifurcations is unknown.
27#
發(fā)表于 2025-3-26 06:23:20 | 只看該作者
28#
發(fā)表于 2025-3-26 11:41:49 | 只看該作者
One-Parameter Bifurcations of Fixed Points in Discrete-Time Dynamical Systems,In this chapter, which is organized very much like Chap. 3, we present bifurcation conditions defining the simplest bifurcations of fixed points in .-dimensional discrete-time dynamical systems: the fold, the flip, and the Neimark-Sacker bifurcations.
29#
發(fā)表于 2025-3-26 15:09:34 | 只看該作者
30#
發(fā)表于 2025-3-26 20:09:42 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 18:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
贵州省| 清新县| 榆社县| 龙泉市| 东平县| 蒲城县| 德兴市| 蚌埠市| 五家渠市| 河北区| 马公市| 大竹县| 名山县| 保定市| 天长市| 武功县| 芦溪县| 南和县| 林西县| 阿图什市| 成都市| 盖州市| 怀仁县| 耿马| 黑龙江省| 宣威市| 高尔夫| 即墨市| 上思县| 呼伦贝尔市| 崇阳县| 祁连县| 辽宁省| 桐柏县| 陇南市| 兴化市| 修水县| 靖远县| 安徽省| 蓝山县| 温州市|