找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Elements of Applied Bifurcation Theory; Yuri A. Kuznetsov Book 2023Latest edition The Editor(s) (if applicable) and The Author(s), under e

[復制鏈接]
樓主: grateful
31#
發(fā)表于 2025-3-26 21:21:21 | 只看該作者
W. Schlegel,L. R. Schad,K. K. Herfarthl systems and their?classification, bifurcations and bifurcation diagrams, and topological normal forms for bifurcations. The last section is devoted to the more abstract notion of structural stability. In this chapter we will be dealing only with dynamical systems in the state space .. We would lik
32#
發(fā)表于 2025-3-27 02:21:30 | 只看該作者
Maximilian Reiser,Wolfhard Semmleropf bifurcations. Then we study these bifurcations in the lowest possible dimensions: the fold bifurcation for scalar systems and the Hopf bifurcation for planar systems. Appendixes A and B are devoted to technical questions appearing in the analysis of Hopf bifurcation: Effects of higher-order term
33#
發(fā)表于 2025-3-27 08:40:51 | 只看該作者
34#
發(fā)表于 2025-3-27 12:05:56 | 只看該作者
Anatomisch-funktionelle Grundlagen,e dynamical systems. First, we consider in detail two- and three-dimensional cases where geometrical intuition can be fully exploited. Then we show how to reduce generic .-dimensional cases to the considered ones plus a four-dimensional case treated in Appendix A.
35#
發(fā)表于 2025-3-27 14:38:15 | 只看該作者
36#
發(fā)表于 2025-3-27 18:50:26 | 只看該作者
Vollendete Werke vor der ,: ,, Frühe Liederr the final two bifurcations in the previous chapter, the description of the majority of these bifurcations is incomplete in principle. For all but two cases, only . normal forms can be constructed. Some of these normal forms will be presented in terms of associated planar continuous-time systems wh
37#
發(fā)表于 2025-3-27 22:33:44 | 只看該作者
https://doi.org/10.1007/978-3-476-02910-2l routines like those for solving linear systems, finding eigenvectors and eigenvalues, and performing numerical integration of ODEs are known to the reader. Instead, we focus on algorithms that are more specific to bifurcation analysis, specifically those for the location?of equilibria (fixed point
38#
發(fā)表于 2025-3-28 03:44:05 | 只看該作者
39#
發(fā)表于 2025-3-28 06:23:51 | 只看該作者
Bifurcations of Orbits Homoclinic and Heteroclinic to Hyperbolic Equilibria,e dynamical systems. First, we consider in detail two- and three-dimensional cases where geometrical intuition can be fully exploited. Then we show how to reduce generic .-dimensional cases to the considered ones plus a four-dimensional case treated in Appendix A.
40#
發(fā)表于 2025-3-28 12:31:17 | 只看該作者
Yuri A. KuznetsovCenter manifold reduction & computation of normal forms is applied; normal forms for bifurcations of limit cycles.More results on topological equivalence of scalar maps are given.Techniques to study d
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 19:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
津南区| 永清县| 子洲县| 昌邑市| 洞头县| 谷城县| 黄陵县| 金川县| 巴楚县| 鄯善县| 广宁县| 鹤峰县| 宜州市| 儋州市| 镇沅| 大渡口区| 明光市| 新巴尔虎左旗| 临汾市| 贵德县| 昌都县| 泗洪县| 绥江县| 宜丰县| 阜康市| 瑞金市| 旺苍县| 北京市| 胶南市| 贵港市| 密山市| 洪湖市| 南川市| 扶风县| 禄丰县| 南汇区| 个旧市| 台北市| 乐至县| 三门峡市| 寻甸|