找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Electromagnetic Fields Excited in Volumes with Spherical Boundaries; Yuriy M. Penkin,Victor A. Katrich,Victor M. Dakhov Book 2019 The Edit

[復制鏈接]
查看: 32182|回復: 38
樓主
發(fā)表于 2025-3-21 17:46:26 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Electromagnetic Fields Excited in Volumes with Spherical Boundaries
編輯Yuriy M. Penkin,Victor A. Katrich,Victor M. Dakhov
視頻videohttp://file.papertrans.cn/306/305989/305989.mp4
概述Presents the construction of Green’s functions for the Hertz potentials in electrodynamic volumes with spherical boundaries, including those with inhomogeneous radial filling.Provides the results and
叢書名稱Lecture Notes in Electrical Engineering
圖書封面Titlebook: Electromagnetic Fields Excited in Volumes with Spherical Boundaries;  Yuriy M. Penkin,Victor A. Katrich,Victor M. Dakhov Book 2019 The Edit
描述.This book discusses the problem of electromagnetic wave excitation in spatial regions with spherical boundaries and the accurate mathematical modeling based on numerical and analytical methods to significantly reduce the time required for developing new antenna devices. It particularly focuses on elements and systems on mobile objects of complex shape that are made of new technological materials. The experimental development of such devices and systems is an extremely time-consuming, lengthy, and expensive process. The book is intended for senior and postgraduate students and researchers working in the fields of radiophysics, radio engineering and antenna design. The authors assume that readers understand the basics of vector and tensor analysis, as well as the general theory of electrodynamics. The original results presented can be directly used in the development of spherical antennas and antenna systems for the mobile objects...The book addresses problems concerning the construction of Green’s functions for Hertz potentials in electrodynamic volumes with spherical boundaries, and solves these clearly and concisely. It also uses specific examples to analyze areas where the resul
出版日期Book 2019
關鍵詞Excitation Of Electromagnetic Waves; Green’s Function For Spherical Resonators; Electromagnetic Fields
版次1
doihttps://doi.org/10.1007/978-3-319-97819-2
isbn_softcover978-3-030-07409-8
isbn_ebook978-3-319-97819-2Series ISSN 1876-1100 Series E-ISSN 1876-1119
issn_series 1876-1100
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Electromagnetic Fields Excited in Volumes with Spherical Boundaries影響因子(影響力)




書目名稱Electromagnetic Fields Excited in Volumes with Spherical Boundaries影響因子(影響力)學科排名




書目名稱Electromagnetic Fields Excited in Volumes with Spherical Boundaries網(wǎng)絡公開度




書目名稱Electromagnetic Fields Excited in Volumes with Spherical Boundaries網(wǎng)絡公開度學科排名




書目名稱Electromagnetic Fields Excited in Volumes with Spherical Boundaries被引頻次




書目名稱Electromagnetic Fields Excited in Volumes with Spherical Boundaries被引頻次學科排名




書目名稱Electromagnetic Fields Excited in Volumes with Spherical Boundaries年度引用




書目名稱Electromagnetic Fields Excited in Volumes with Spherical Boundaries年度引用學科排名




書目名稱Electromagnetic Fields Excited in Volumes with Spherical Boundaries讀者反饋




書目名稱Electromagnetic Fields Excited in Volumes with Spherical Boundaries讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 23:29:28 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:27:11 | 只看該作者
1876-1100 with inhomogeneous radial filling.Provides the results and .This book discusses the problem of electromagnetic wave excitation in spatial regions with spherical boundaries and the accurate mathematical modeling based on numerical and analytical methods to significantly reduce the time required for
地板
發(fā)表于 2025-3-22 05:23:37 | 只看該作者
Die irdische Atmosph?re und ihre Wirkungen, and metalized, i.e. with boundary surfaces partially coated with a metal. Filling of the cavities may be either homogeneous or inhomogeneous, as in metal-dielectric resonators. Along with the term cavity the terms resonant cavity and resonant volume are often used.
5#
發(fā)表于 2025-3-22 12:27:25 | 只看該作者
6#
發(fā)表于 2025-3-22 14:25:56 | 只看該作者
,Green’s Functions for Spherical Resonators,tacting with less dense electromagnetic medium. Cavity resonators are classified into the following categories: metallic or screened, dielectric or open, and metalized, i.e. with boundary surfaces partially coated with a metal. Filling of the cavities may be either homogeneous or inhomogeneous, as i
7#
發(fā)表于 2025-3-22 20:40:21 | 只看該作者
,Green’s Functions for an Infinite Space Outside a Spherical Scatterer,nt for studying radiation fields of surface antennas (Voskresensky et al. in Convex scanning antennas. Sovetskoye Radio, Moscow, 1978 [.]), since for radiation system, consisting of current sources and scatterer, these fields are defined by the scatterer surface, which serves as a source of secondar
8#
發(fā)表于 2025-3-23 01:00:18 | 只看該作者
9#
發(fā)表于 2025-3-23 02:18:39 | 只看該作者
Angewandte Mathematik für Amateurastronomenn. In accordance with existing traditions, this section allow readers to become familiar with numerous notations used in the book. It outlines main theoretical concepts, needed for further work with monograph text and saves the readers from having recourse to other literary sources.
10#
發(fā)表于 2025-3-23 07:03:01 | 只看該作者
Die irdische Atmosph?re und ihre Wirkungtacting with less dense electromagnetic medium. Cavity resonators are classified into the following categories: metallic or screened, dielectric or open, and metalized, i.e. with boundary surfaces partially coated with a metal. Filling of the cavities may be either homogeneous or inhomogeneous, as i
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 20:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
东城区| 彭州市| 综艺| 河东区| 大丰市| 安达市| 绥德县| 芜湖县| 炎陵县| 永嘉县| 平乐县| 纳雍县| 阳山县| 乐昌市| 双桥区| 马山县| 营山县| 汕尾市| 安福县| 五常市| 若羌县| 镇雄县| 毕节市| 九江市| 宁河县| 富源县| 磐石市| 石屏县| 绍兴市| 南宫市| 乐昌市| 运城市| 十堰市| 西盟| 保靖县| 广河县| 锦州市| 东城区| 益阳市| 若羌县| 勐海县|