找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Einstein Manifolds; Arthur L. Besse Book 1987 Springer-Verlag Berlin Heidelberg 1987 Einstein.Manifolds.Riemannian geometry.Submersion.Top

[復(fù)制鏈接]
樓主: Recovery
21#
發(fā)表于 2025-3-25 05:33:51 | 只看該作者
Homogeneous Riemannian Manifolds,In this chapter, we sketch the general theory of homogeneous Riemannian manifolds and we use it to give some examples of (homogeneous) Einstein manifolds. Up to now, the general classification of homogeneous Einstein manifolds is not known even in the compact case. In particular, the following question is still an open problem.
22#
發(fā)表于 2025-3-25 07:55:26 | 只看該作者
23#
發(fā)表于 2025-3-25 13:09:56 | 只看該作者
Riemannian Submersions,The notion of . (see 1.70) has been intensively studied since the very beginning of Riemannian geometry. Indeed the first Riemannian manifolds to be studied were surfaces imbedded in R.. As a consequence, the differential geometry of Riemannian immersions is well known and available in many textbooks (see for example [Ko-No 1, 2], [Spi]).
24#
發(fā)表于 2025-3-25 19:18:20 | 只看該作者
25#
發(fā)表于 2025-3-25 20:19:44 | 只看該作者
26#
發(fā)表于 2025-3-26 02:39:54 | 只看該作者
Arthur L. BesseIncludes supplementary material:
27#
發(fā)表于 2025-3-26 06:28:31 | 只看該作者
28#
發(fā)表于 2025-3-26 09:03:54 | 只看該作者
https://doi.org/10.1007/978-3-540-74311-8Einstein; Manifolds; Riemannian geometry; Submersion; Topology; Volume; curvature; equation; function; geomet
29#
發(fā)表于 2025-3-26 16:22:41 | 只看該作者
978-3-540-74120-6Springer-Verlag Berlin Heidelberg 1987
30#
發(fā)表于 2025-3-26 18:46:48 | 只看該作者
Geburtshilfliche Operationslehref an infinity of small pieces of Euclidean spaces). In modern language, a Riemannian manifold (.) consists of the following data: a compact .. manifold . and a metric tensor field . which is a positive definite bilinear symmetric differential form on .. In other words, we associate with every point
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 18:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
玉田县| 峡江县| 建平县| 武乡县| 乌拉特后旗| 息烽县| 肥东县| 山西省| 同德县| 长汀县| 久治县| 临桂县| 永平县| 雅安市| 新余市| 萨嘎县| 宿松县| 紫金县| 山西省| 西丰县| 双柏县| 垣曲县| 紫阳县| 云安县| 曲阳县| 岑巩县| 漳州市| 吉木萨尔县| 霸州市| 扎兰屯市| 金华市| 大姚县| 平谷区| 镇平县| 柞水县| 西林县| 布尔津县| 德安县| 巴林右旗| 长丰县| 元氏县|